1,118 research outputs found

    Photovoltaic System Adoption in Water Related Technologies – A Review

    Get PDF
    Water and energy are intimately related, as water is required for energy applications and energy is required for water-based technologies. Two large groups of photovoltaic adoptions have been identified in this review: first, those in which the photovoltaic system is separated from the water technology. In second group, the photovoltaic system is in physical contact with the water technology thereby its performance is affected either in a positive or negative way. The novelty of this review work lies in the classification of photovoltaic system adoption in various water related technologies. Apart from classification, discussions on system configurations, working aspects, performance aspects, economic aspects and scope for further investigations have been presented in detail. Wastewater treatment plants are identified to be the most suitable site for photovoltaic module installation and utilization. Among power sectors, hydro power plants are highly compatible with photovoltaic adoption because it enhances hydro power plant’s operation time and utilization. Floating photovoltaic, submerged photovoltaic, agrivoltaic, aquavoltaic and solar photovoltaic + water disinfection are relatively new, highly attractive and have more scope for further improvements. Agrivoltaic and aquavoltaic increases crop & sea food production, enhances farmers’ income, encourage clean energy transition and rural electrification. Research works in the area of unmanned photovoltaic based water vehicles, photovoltaic salt harvest and various applications of water based photovoltaic/thermal modules have also been discussed. This review will serve as a guidebook for researchers and policy makers to identify and select suitable configuration of photovoltaic–water related technologies for implementation and further investigations

    The Pragmatic Development of a Carbon Management Framework for UK SMEs

    Get PDF
    The UK's commitment to net-zero emissions by 2050 is challenged by critics citing current government strategies as inadequate, marked by a lack of concrete action and aspirational guidelines. Notably, businesses, including small and medium-sized enterprises (SMEs) which constitute about half of all business emissions, are pivotal to this goal. Yet, existing policies and standards often neglect the significant role of SMEs, who face barriers such as limited knowledge and resources in implementing carbon management practices. This thesis explores the development of a novel carbon management framework specifically designed for medium-sized organisations in the UK to address these problems. The research adopts a practical approach through collaboration with an industry partner, facilitating a case study for real-world application. Adopting a mixed-methods research design grounded in pragmatism, the study commenced with a qualitative study in the form of a focus group. This exploratory phase, critical for understanding SME challenges, yielded rich data revealing key management themes in strategy, energy, and data. The framework design was supported by a materiality assessment and input from key stakeholders on three major iterations. The final framework comprises three phases: establishing a baseline carbon footprint, creating a carbon reduction plan, and strategically implementing this plan. The validation process, conducted at Knowsley Safari, successfully tested the initial two phases but faced constraints in fully assessing the third phase due to time limitations. While the research achieved its primary aim of developing a novel carbon management framework for SMEs, it encountered limitations, notably in time and the generalisability of findings due to reliance on a single case study. Future research could test the framework across diverse SME settings to establish its broader applicability and effectiveness in aiding the UK's net-zero emission goals

    SET2022 : 19th International Conference on Sustainable Energy Technologies 16th to 18th August 2022, Turkey : Sustainable Energy Technologies 2022 Conference Proceedings. Volume 4

    Get PDF
    Papers submitted and presented at SET2022 - the 19th International Conference on Sustainable Energy Technologies in Istanbul, Turkey in August 202

    Design of an autonomous photovoltaic power supply system for Nyabikenke Hospital (Burundi) using the ETAP tool

    Get PDF
    Our energy future must be based on non-polluting energies with significant resources. Renewable energies are the best candidates, but the intermittency of their production requires finding efficient and environmentally friendly storage means. Solar electricity must be stored to be used later when needed. There are many ways to store electricity, and they all involve converting it to another form of energy that is easier to contain. A study on the design of an autonomous electrical system was carried out at Nyabikenke Hospital to solve the major problem of the lack of hydroelectric power at Nyabikenke Hospital. We therefore first sought to estimate the energy needs of the user and then proceeded to an optimal dimensioning of our system using the ETAP software. In normal operation, the photovoltaic field and the battery bank will operate, in the event of a cut in the two sources, the emergency Diesel generator intervenes. The design tool simulates the operation of an autonomous electrical system for a load of 131.5kW necessary for the hospital to be supplied. He can design any system from the experimental results of the components. The results of the simulation make it possible to characterize the operation of the system in an autonomous application, determine its performance, and evaluate the influence of the various losses

    STUDY OF STRATEGIES FOR AN OPTIMAL ENERGY MANAGEMENT ON ELECTRIC AND HYBRID VEHICLES

    Get PDF
    Questa tesi di dottorato è focalizzata sull’identificazione di strategie di gestione dell’energia a bordo di veicoli elettrici e ibridi, con l’obiettivo di ottimizzare la gestione dell’energia e, quindi, consentire un risparmio di risorse. Infatti, l’ottimizzazione della fase d’uso del veicolo, attraverso una più efficiente gestione dell’energia, consente di dimensionare in modo ridotto i principali componenti, come il pacco batterie. Innanzitutto, viene presentato un tool di simulazione denominato TEST (Target-speed EV Simulation Tool). Questo strumento consente di effettuare simulazioni di dinamica longitudinale per veicoli completamente elettrici o ibridi e, quindi, di monitorare tutti i dati rilevanti necessari per effettuare un corretto dimensionamento del gruppo propulsore, inclusi il/i motore/i elettrico/i ed il pacco batterie. Inoltre, è possibile testare anche diversi layout di propulsori, compresi quelli che utilizzano celle a combustibile, le cosiddette “fuel cell”. Viene poi presentata una strategia di frenata rigenerativa, adatta per veicoli FWD, RWD e AWD. L’obiettivo principale è quello di recuperare la massima energia frenante possibile, mantenendo il veicolo stabile, con buone prestazioni in frenata. La strategia è stata testata sia attraverso un consolidato software di simulazione della dinamica del veicolo (VI-CarRealTime), sia attraverso simulazioni “driver-in-the-loop” utilizzando un simulatore di guida. Inoltre, la strategia proposta è stata integrata nel tool TEST per valutarne l’influenza sull’autonomia e sui consumi del veicolo. Gli strumenti sopra menzionati sono stati utilizzati per studiare uno scenario di casi reali, per valutare la fattibilità dell’utilizzo di una flotta alimentata a fuel cell a metano per svolgere attività di raccolta rifiuti porta a porta. I risultati mostrano un’elevata fattibilità in termini di autonomia del veicolo rispetto alle missioni standard di raccolta dei rifiuti, a condizione che i componenti siano adeguatamente dimensionati. Il dimensionamento dei componenti è stato effettuato attraverso iterazioni, utilizzando diversi componenti nelle stesse missioni. Infine, è stata riportata un’analisi approfondita degli studi LCA (Life Cycle Assessment) relativi ai veicoli elettrici, con particolare attenzione al pacco batterie, evidenziando alcune criticità ambientali. Questo studio sull’LCA sottolinea quindi l’importanza di una corretta gestione dell’energia per ridurre al minimo l’impatto ambientale associato al consumo stesso di energia.This PhD thesis is focused on identifying energy management strategies on board electric and hybrid vehicles, to optimize energy management and thus allow for resource savings. In fact, vehicle’s operational phase optimisation through a more efficient energy management allows main components downsizing, such as battery pack. First of all, a simulation tool called TEST (Target-speed EV Simulation Tool), is presented. This tool allows to carry out longitudinal dynamics simulations on pure electric or hybrid-electric vehicles, and therefore monitoring all the relevant data needed to carry out a proper powertrain sizing, including the electric motor(s) and the battery pack. Furthermore, several powertrain layouts can be also tested, including those using fuel cells. Then a regenerative braking strategy, suitable for FWD, RWD and AWD vehicles, is presented. Its main target is to recover the maximum possible braking energy, while keeping the vehicle stable with good braking performance. The strategy has been tested both through a state-of-art vehicle dynamics simulation software (VI-CarRealTime) and through driver-in-the-loop simulations using a driving simulator. Furthermore, the proposed strategy has been integrated into TEST to evaluate its influence on vehicle range and consumptions. The above-mentioned tools have been used to evaluate a real-world case scenario to assess the feasibility of using a methane fuel cell powered fleet to carry out door to door waste collection activities. Results show high feasibility in terms of vehicle range compared to standard waste collection missions, provided that components are properly sized. Components sizing has been done through iterations using different components on the same missions. Finally, an in-depth analysis of the LCA (Life Cycle Assessment) studies related to electric vehicles has been reported, with particular focus to the battery pack, highlighting some environmental critical issues. This LCA study therefore emphasizes the importance of a correct energy management to minimize the environmental impact associated with energy consumption

    Integration of Flywheel Energy Storage Systems in Low Voltage Distribution Grids

    Get PDF
    A Flywheel Energy Storage System (FESS) can rapidly inject or absorb high amounts of active power in order to support the grid, following abrupt changes in the generation or in the demand, with no concern over its lifetime. The work presented in this book studies the grid integration of a high-speed FESS in low voltage distribution grids from several perspectives, including optimal allocation, sizing, modeling, real-time simulation, and Power Hardware-in-the-Loop testing

    National Conference on ‘Renewable Energy, Smart Grid and Telecommunication-2023

    Get PDF
    Theme of the Conference: “The challenges and opportunities of integrating renewable energy into the grid” The National Conference on Renewable Energy, Smart Grid, and Telecommunication - 2023 is a platform for industry experts, researchers, and policymakers to come together and explore the latest advancements and challenges in the fields of renewable energy, smart grids, and telecommunication. Conference Highlights: In-depth discussions on renewable energy technologies and innovations. Smart grid integration for a sustainable future. The role of telecommunication in advancing renewable energy solutions. Networking opportunities with industry leaders and experts. Presentation of cutting-edge research papers and case studies. Conference topics: Renewable Energy Technologies and Innovations Smart Grid Development and Implementation Telecommunication for Energy Systems Energy Storage and Grid Balancing Policy, Regulation, and Market Dynamics Environmental and Social Impacts of Renewable Energy Energy Transition and Future Outlook Integration of renewable energy into the grid Microgrids and decentralized energy systems Grid cybersecurity and data analytics IoT and sensor technologies for energy monitoring Data management and analytics in energy sector Battery storage technologies and applicationshttps://www.interscience.in/conf_proc_volumes/1087/thumbnail.jp
    corecore