140 research outputs found

    Spatial Perspective Transform Estimation from Fourier Spectrum Analysis of 2D Patterns in 3D Space

    Full text link
    A novel approach to 3D surface imaging is proposed, allowing for the continuous sampling of 3D surfaces to extract localized perspective transformation coefficients from Fourier spectrum analysis of projected patterns. The mathematical relationship for Spatial-Fourier Transformation Pairs is derived, defining the transformation of spatial transformed planar surfaces in the Discrete Fourier Transform spectrum. The mathematical relationship for the twelve degrees of freedom in perspective transformation is defined and validated, asserting congruity with independent and uniform transform pairs for spatial Euclidean, similarity, affine and perspective transformations. This work expands on previously derived affine Spatial-Fourier Transformation Pairs and characterizes its implications towards 3D surface imaging as a means of augmenting (X,Y,Z)-(R,G,B) point-clouds to include additional information from localized sampling of pattern transformations

    Laser Scanning Based Object Detection to Realize Digital Blank Shadows for Autonomous Process Planning in Machining

    Get PDF
    The automated process chain of an unmanned production system is a distinct challenge in the technical state of the art. In particular, accurate and fast raw-part recognition is a current problem in small-batch production. This publication proposes a method for automatic optical raw-part detection to generate a digital blank shadow, which is applied for adapted CAD/CAM (computer-aided design/computer-aided manufacturing) planning. Thereby, a laser-triangulation sensor is integrated into the machine tool. For an automatic raw-part detection and a workpiece origin definition, a dedicated algorithm for creating a digital blank shadow is introduced. The algorithm generates adaptive scan paths, merges laser lines and machine axis data, filters interference signals, and identifies part edges and surfaces according to a point cloud. Furthermore, a dedicated software system is introduced to investigate the created approach. This method is integrated into a CAD/CAM system, with customized software libraries for communication with the CNC (computer numerical control) machine. The results of this study show that the applied method can identify the positions, dimensions, and shapes of different raw parts autonomously, with deviations less than 1 mm, in 2.5 min. Moreover, the measurement and process data can be transferred without errors to different hardware and software systems. It was found that the proposed approach can be applied for rough raw-part detection, and in combination with a touch probe for accurate detection

    Real Time Structured Light and Applications

    Get PDF

    Catalytic steam reformer tubes non-destructive inspection technology investigation and advancement : a dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Manawatu Campus, New Zealand

    Get PDF
    Catalytic Steam reforming is a chemical synthesis process used in the production of hydrogen by mixing hydrocarbon with steam in the presence of a metal-based catalyst. This is achieved in a steam reformer plant where the mixture of gases is elevated to high pressure and temperature through a continuous process for efficient mass production of syngas to meet the global hydrogen demand. One of the challenges in operating a steam reformer plant is monitoring and maintaining the tubular reactors (Reformer tube). Under the severe service conditions the tubes a subjected to various degradation mechanism which ultimately determine the service life. With the tubes accounting to over 20% of the capital cost of a reformer plant, it is of great significance to maximise the service life of each tubes, which has been the motivation to the advancement in metallurgy and NDT technology around reformer tubes from the introduction of Catalytic Steam reforming in the early 20th century. Under the influence of long-term exposure of mechanical stressing and elevated temperature, reformer tube is subjected to a material degrading phenomenon call creep deformation. In 1952, F.R. Larson and J. Miller devised the Larson-Miller Parameter which predicts the lifetime of a material based on service temperature and stress-rupture time and for decades this method was used design and managed reformer tubes on a time-based strategy of 10,000 service hour. However, case studies have time and time shown premature rupture of reformer tube causing unexpected downtime resulting in significant loss in production and asset. Hence engineers and researchers have worked on a more direct method of assessing the remaining service life of reformer tubes. Inline pipe inspection is a hot area of research in robotics and automation. Eddy current, laser profilometry, ultrasonic and infrared thermography is the four technology that is currently dominating the Reformer industry, of which laser profilometry assessment being the only method capable of early stage creep detection. While other fields of pipe inspection have advanced and industrially applied over past decades, it is the author's opinion that NDT technology for reformer tube is outdated with areas of innovation. The aim of this research is to investigate an alternative solution to overcome the challenges and limited faced in modern systems and contribute to the advancement of NDT of Catalytic Steam reformer tubes. Presented in this dissertation is a new framework for an autonomous Reformer Tube inspection system, which incorporates a number of innovative elements for improved creep damage assessment. The program for this work is comprised of three studies. In the first study, the challenges around process profilometry dataset is demonstrated, the limitation in the available methods is discussed, and the impacts in regards to detection creep deformation is identified. Based on the finding, a three-stage creep detection algorithm (CDA) is derived, offering a dynamic solution to distinguish two modes of isotropic and anisotropic creep deformation. The system is experimentally assessed using a set of profilometry measurements collected from retire reformer tube. In the second study, a novel method for tracking a motion of an object moving inside a reformer tube is devised. Literature study showed that conventional profilometry system suffers from measurement uncertainty cause from an uncontrolled rotation of measurement instruction during an inspection. Because location information gives valuable insight as to the performance of the plant, the long-range optic solution is conceptualised, based on polarising filters and Malus Law, to overcome these limitations. In this research, a proof of concept experiment is conducted to evaluate and justify the conceptual method through the development of a working prototype. This novel technique is named Optical Position Tracking (OPT) system. Presented in the final study is an autonomous reformer tube inspection system developed on the basis of the results and finding in the first portion of the research. The contribution of this research is demonstrated with a working prototype justifying the practicality of CDA and the OPT system. The design incorporates wireless communication, modular design, and modern semiconductor sensing technology. In conclusion, this research met the first milestone for an ongoing research to progress the NTD industry

    Advances in Stereo Vision

    Get PDF
    Stereopsis is a vision process whose geometrical foundation has been known for a long time, ever since the experiments by Wheatstone, in the 19th century. Nevertheless, its inner workings in biological organisms, as well as its emulation by computer systems, have proven elusive, and stereo vision remains a very active and challenging area of research nowadays. In this volume we have attempted to present a limited but relevant sample of the work being carried out in stereo vision, covering significant aspects both from the applied and from the theoretical standpoints

    A vision-based system for internal pipeline inspection

    Get PDF
    The internal inspection of large pipeline infrastructures, such as sewers and waterworks, is a fundamental task for the prevention of possible failures. In particular, visual inspection is typically performed by human operators on the basis of video sequences either acquired on-line or recorded for further off-line analysis. In this work, we propose a vision-based software approach to assist the human operator by conveniently showing the acquired data and by automatically detecting and highlighting the pipeline sections where relevant anomalies could occur

    Crack Analyser: a novel image-based NDT approach for measuring crack severity ​

    Get PDF
    openIn Europa, le infrastrutture civili e di trasporto necessitano di una manutenzione efficace e proattiva per garantire il continuo funzionamento in sicurezza durante l'intero loro ciclo di vita. I paesi europei devono ogni anno stanziare enormi risorse per mantenere il loro livello di funzionalità. Ciò fa sorgere la necessità urgente di adottare approcci di ispezione di monitoraggio più rapidi e affidabili per aiutare ad affrontare questi problemi. Il deterioramento delle strutture è più spesso anticipato dalla formazione di fessure sulla superficie del calcestruzzo. La presenza di fessurazioni può essere sintomo di diverse problematiche quali dilatazioni e ritiri dovuti a sbalzi di temperatura, assestamenti della struttura, copertura impropria fornita in fase di getto, corrosione delle armature in acciaio, carichi pesanti applicati, vibrazioni insufficienti al momento della posa del calcestruzzo o perdite d'acqua per ritiro superficiale del calcestruzzo. Diventa quindi di primaria importanza l'identificazione, la misurazione e il monitoraggio delle fessurazioni sulla superficie del calcestruzzo. I principali metodi di ispezione attualmente adottati si basano su strumenti manuali e righelli: un’attività lunga e ingombrante, soggetta a errori e scarsamente oggettiva sull'analisi quantitativa perché fortemente dipendente dall'esperienza dell'operatore. Secondo la norma UNI EN 1992-1-1:2005, la larghezza massima delle fessure del calcestruzzo ammessa per una generica classe di rischio è di 0,3 mm. Per questo motivo, per misurare in modo accurato e affidabile la dimensione della fessura, è necessario l’impiego di strumenti di misura con caratteristiche metrologiche adeguate (es. precisione e accuratezza almeno un ordine inferiore al valore da misurare). In caso contrario, la severità della fessura potrebbe essere classificata erroneamente. Questo lavoro di tesi propone un nuovo approccio automatico, basato su immagini, in grado di localizzare e misurare fessure su superfici in calcestruzzo rispettando il vincolo metrologico imposto dalla norma UNI EN 1992-1-1:2005. Utilizzando una sola immagine, il metodo sviluppato è in grado di localizzare e misurare automaticamente e rapidamente la larghezza e la lunghezza di una fessura su una superficie. Il sistema di misura sviluppato sfrutta una singola telecamera operante nel campo del visibile per acquisire un'immagine digitalizzata della superficie da ispezionare. Il componente software del sistema riceve in input la singola immagine che inquadra la crepa e fornisce in output un'immagine aumentata dove viene evidenziata la crepa e la sua larghezza e lunghezza media/max. La misura della larghezza della fessura viene eseguita perpendicolarmente alla linea centrale della fessura con una precisione sub-pixel. Il sistema di misurazione è stato implementato su uno smartphone per eseguire ispezioni manuali da parte dell'operatore e su sistemi integrati per l'ispezione remota con robot o velivoli senza pilota (UAV)). Le strategie sviluppate possono essere facilmente estese a qualsiasi altro contesto in cui sia richiesto un controllo di qualità superficiale mirato all'identificazione e misura di eventuali danni o difettosità. ​Europe’s ageing transport infrastructure needs effective and proactive maintenance in order to continue its safe operation during the entire life cycle; European countries have to allocate huge resources for maintaining their service-ability level. This give rise to the necessity of an urgent need to adopt faster and more reliable monitoring inspection approaches to help tackling these issues. The deterioration of structures is most often foreseen by the formation of cracks on concrete surface. The presence of cracks can be a symptom of various problems like expansion and shrinks due to temperature differences, settlement of the structure, improper cover provided during concreting, corrosion of reinforcement steel, heavy load applied, insufficient vibration at the time of laying the concrete or loss of water from concrete surface shrinkage, therefore the identification, measurement and monitoring of cracks on the concrete surface becomes of primary importance. The main currently adopted inspection methods rely on visual marking and rulers, long and cumbersome activity, prone to errors and poorly objective on quantitative analysis because it strongly depends on operator experience. According to UNI EN 1992-1-1:2005 standard , the maximum admitted concrete crack width is 0.3 mm. For this reason, to accurately and reliably measure the target dimension, it is necessary to employ measurement instruments with suitable metrological characteristics (e.g. precision and accuracy at least one order lower than the value to be measured). Otherwise, the crack severity could be misclassified. This thesis work proposes a novel automatic image-based approach able to locate and measure cracks on concrete surfaces respecting the metrological constraint imposed by UNI EN 1992-1-1:2005 standard. Using only one image, the developed method is able to automatically and rapidly locate and measure the average width and length of a crack in an existing concrete structure. The measurement system developed exploits a single camera working in the visible range to acquire a digitized image of the structure being inspected. The software component of the system receives as input the single image framing the crack and gives as output an augmented image where the crack is highlighted as well as its average/max width and length. The measure of the crack width is performed perpendicularly to the crack central line with sub-pixel accuracy. The measurement system has been deployed on a smartphone for operator-based manual inspections as well on embedded systems for remote inspection with robots or Unmanned Aerial Vehicles (UAVs). The strategies developed can be easily extended from concrete inspection applications to any other context where a surface quality control targeted to the identification of eventual damages/defects is required. The activity was triggered by an explicit need within the EnDurCrete project. ​INGEGNERIA INDUSTRIALEembargoed_20220321Giulietti, Nicol

    Anatomic Characterization and Profilometry of Tissues with Natural Shape: A Real-time Approach for Robotic-Assisted Minimally Invasive Surgery

    Get PDF
    This master thesis is divided into two major sections. First, anatomic characterization and profilometry of tissues with natural shape: a real-time approach for robotic-assisted minimally invasive surgery (RMIS); and second, design and characterization of a novel tactile array sensor capable of differentiating among different viscoelastic tissues that exhibit time-dependent behaviour. The first part of this thesis is focused on a tissue characterization system for RMIS applications. RMIS has gained immense popularity with the advent of high-precision robotic systems. The lack of haptic feedback, however, is considered as being one of the main drawbacks of present-day RMIS systems. In order to compensate for this deficiency, a novel tissue characterization system is proposed which is inspired from the human haptic system. Hence, kinesthetic and tactile feedback which are constitutive components of human haptic system are used to characterize naturally shaped tissues. Toward this goal, a 5-degree-of-freedom robot which is called Catalys5 is equipped with a ball caster force-cell. The system is used to simulate robotic surgery maneuvers in which an admittance control approach is implemented to design the force feedback controller. The proposed method characterizes naturally shaped tissues, which is capable of touching and palpating to: a) Identify the 2D or 3D surface profile of the target tissue (profilometry), b) Measure the modulus of elasticity of any desired point on the tissue’s surface, c) Find and map the location of any lump in the tissue, and d) Map hardness distribution around the lump. Initially, silicon-rubber materials were used to build tissue phantoms with different curvatures and degrees of softness. The surface profiles were obtained using the developed profilometry algorithm and validated using a 3D scanner. In addition, several experiments were conducted on bovine tissues to evaluate all above mentioned capabilities of the system. The results of experiments on real tissues were also compared to those that are available in current literature. The results indicate that the proposed approach can be used for reliable material characterization for RMIS application. The second part of this thesis is focused on developing an array tactile sensor for distinguishing softness of viscoelastic tissues with time-dependent behaviour for use in MIS and RMIS. Review of literature on tactile sensors reveals that the vast majority deals with determining the applied contact force and object elasticity. In this research, a novel idea is proposed in which a tactile sensor array can measure rate of displacement in addition to force and displacement of any viscoelastic material during the course of a single touch. In order to verify this new array sensor, several experiments were conducted on a range of biological tissues. It was concluded that this novel tactile sensor can distinguish among the softness of real biological tissue with time-dependent behaviour

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System
    corecore