427 research outputs found

    An Embedded Optical Flow Processor for Visual Navigation using Optical Correlator Technology

    Full text link

    Correlation Flow: Robust Optical Flow Using Kernel Cross-Correlators

    Full text link
    Robust velocity and position estimation is crucial for autonomous robot navigation. The optical flow based methods for autonomous navigation have been receiving increasing attentions in tandem with the development of micro unmanned aerial vehicles. This paper proposes a kernel cross-correlator (KCC) based algorithm to determine optical flow using a monocular camera, which is named as correlation flow (CF). Correlation flow is able to provide reliable and accurate velocity estimation and is robust to motion blur. In addition, it can also estimate the altitude velocity and yaw rate, which are not available by traditional methods. Autonomous flight tests on a quadcopter show that correlation flow can provide robust trajectory estimation with very low processing power. The source codes are released based on the ROS framework.Comment: 2018 International Conference on Robotics and Automation (ICRA 2018

    Performance Analysis for Visual Planetary Landing Navigation Using Optical Flow and DEM Matching

    Full text link
    Visual navigation for planetary landing vehicles shows many scientific and technical challenges due to inclined and rather high velocity approach trajectories, complex 3D environment and high computational requirements for real-time image processing. High relative navigation accuracy at landing site is required for obstacle avoidance and operational constraints. The current paper discusses detailed performance analysis results for a recently published concept of a visual navigation system, based on a mono camera as vision sensor and matching of the recovered and reference 3D models of the landing site. The recovered 3D models are being produced by real-time, instantaneous optical flow processing of the navigation camera images. An embedded optical correlator is introduced, which allows a robust and ultra high-speed optical flow processing under different and even unfavorable illumination conditions. The performance analysis is based on a detailed software simulation model of the visual navigation system, including the optical correlator as the key component for ultra-high speed image processing. The paper recalls the general structure of the navigation system and presents detailed end-to-end visual navigation performance results for a Mercury landing reference mission in terms of different visual navigation entry conditions, reference DEM resolution, navigation camera configuration and auxiliary sensor information. I

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Bio-inspired Optical Flow Interpretation with Fuzzy Logic for Behavior-Based Robot Control

    Get PDF
    This paper presents a bio-inspired approach for optical flow data interpretation based on fuzzy inference decision making for visual mobile robot navigation. The interpretation results of regionally averaged optical flow patterns with pyramid segmentation of the optical flow field deliver fuzzy topological and topographic information of the surrounding environment (topological structure from motion). It allows a topological localization in a global map as well as controlled locomotion (obstacle avoidance, goal seeking) in a changing and dynamic environment. The topological optical flow processing is embedded in a behavior based mobile robot navigation system which uses only a mono-camera as primary navigation sensor. The paper discusses the optical flow processing approach as well as the rule based fuzzy inference algorithms used. The implemented algorithms have been tested successfully with synthetic image data for a first verification and parameter tuning as well as in a real office environment with real image data

    A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Get PDF
    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.The research leading to these results has received funding from the Spanish Government and European FEDER funds (DPI2012-32390), the Valencia Regional Government (PROMETEO/2013/085) and the University of Alicante (GRE12-17)

    Toward an Autonomous Lunar Landing Based on Low-Speed Optic Flow Sensors

    No full text
    International audienceFor the last few decades, growing interest has returned to the quite chal-lenging task of the autonomous lunar landing. Soft landing of payloads on the lu-nar surface requires the development of new means of ensuring safe descent with strong final conditions and aerospace-related constraints in terms of mass, cost and computational resources. In this paper, a two-phase approach is presented: first a biomimetic method inspired from the neuronal and sensory system of flying insects is presented as a solution to perform safe lunar landing. In order to design an au-topilot relying only on optic flow (OF) and inertial measurements, an estimation method based on a two-sensor setup is introduced: these sensors allow us to accu-rately estimate the orientation of the velocity vector which is mandatory to control the lander's pitch in a quasi-optimal way with respect to the fuel consumption. Sec-ondly a new low-speed Visual Motion Sensor (VMS) inspired by insects' visual systems performing local angular 1-D speed measurements ranging from 1.5 • /s to 25 • /s and weighing only 2.8 g is presented. It was tested under free-flying outdoor conditions over various fields onboard an 80 kg unmanned helicopter. These pre-liminary results show that the optic flow measured despite the complex disturbances encountered closely matched the ground-truth optic flow

    NASA Automated Rendezvous and Capture Review. A compilation of the abstracts

    Get PDF
    This document presents a compilation of abstracts of papers solicited for presentation at the NASA Automated Rendezvous and Capture Review held in Williamsburg, VA on November 19-21, 1991. Due to limitations on time and other considerations, not all abstracts could be presented during the review. The organizing committee determined however, that all abstracts merited availability to all participants and represented data and information reflecting state-of-the-art of this technology which should be captured in one document for future use and reference. The organizing committee appreciates the interest shown in the review and the response by the authors in submitting these abstracts
    • …
    corecore