27 research outputs found

    Performance of the Intrac Wireless Activity Tracking System for the Afari Assistive Device

    Get PDF
    Afari is a mobility device that was designed to be more recreational, aesthetic, and functional outside than the typical mobility devices commonly used today such as walkers, crutches, and rollators. The Afari transfers weight from a user through the arm rests and enforces an upright posture while walking with correct adjustments to the arm rest height. In addition to assisting with walking or running, a sensor system fitted to the Afari device has been designed to analyze different aspects of activity tracking such as the dynamic loading applied to the arm rests, spatial-temporal gait parameters, speed, and distance. This includes various sensors, namely, load cells for each arm rest, an inertial measurement unit, and a speed and distance sensor that wirelessly transmit data via Bluetooth Low Energy (BLE) to either a smartphone or computer. The total distance, pitch angle, right and left loading on each armrest can be viewed in real time by the user. An algorithm was created in MATLAB to process all the raw data and compute cadence, stride length, average toe-off and heel strike angle, swing and stance time, and speed over the duration of active use. An Afari user can monitor these different aspects of their activity and adjust accordingly to potentially improve their balance or gait

    Online control of a mobility assistance smart walker

    Get PDF
    Dissertação de mestrado integrado em Engenharia BiomédicaThis work presents the NeoASAS project that was developed at the Bioengineering Group, Consejo Superior de Investigaciones Cientificas (CSIC) in Madrid. Further, it continued with adaptations and improvements at Minho University with the Adaptive System Behavior Group (ASBG) in Guimarães, being designated by ASBGo Project. These developments include the conceptual design, implementation and validation of Smart Walkers with a new interface approach integrated into these devices. This interface is based on a joystick and it is intended to extract the user’s movement intentions. It was designed to be user-friendly and efficient, meeting usability aspects and focused on a commercial implementation, but not being demanding at the user cognitive level. Considering the ASBGo walker, the overall assemblage, mechanical adjustments, electronics and computing have been performed. First, a review about the mobility assistive devices is presented, specially focused on Smart Walkers. Despite the intensive research, in current literature, there are not many works providing a "point of the situation", and explaining the role that robotics can play in this domain. Healthy users performed preliminary sets of experiments with each walker, which showed the sensibility of the joystick to extract command intentions from the user. These signals presented a higher frequency component that was attenuated by a Benedict-Bordner g-h filter, considering the NeoASAS walker and by a Butterworth circuit, considering the ASBGo walker. These methodologies offer a cancelation of the undesired components from joystick data, allowing the system to extract in real-time user’s commands. Based on this identification, an approach to the control architecture based on a fuzzy logic algorithm was developed, in order to allow the control of the walkers’ motors. In addition, a set of sensors were integrated on the walker for safety reasons: an infrared sensor to detect if the user is falling forwards; two force sensors to make sure that the user is properly grabbing the hand support; and two force sensors in the support forearms to verify if the user is with his forearms properly supported. This will make sure that the device stops when one of these situations happens. Thus, an assistive device to provide safety and natural manoeuvrability was conceived and offers a certain degree of intelligence in assistance and decision-making. These results will be used to advance towards a commercial product with an affordable cost, but presenting high reliability and safety. The motivation is that this will contribute to improve rehabilitation purposes by promoting ambulatory daily exercises and thus extend users’ independent living.Este trabalho apresenta o projecto NeoASAS desenvolvido no Grupo de Bioengenharia, do Consejo Superior de Investigaciones Cientificas (CSIC) em Madrid. Este teve continuidade com adaptações e melhorias na Universidade do Minho com o grupo Adaptative System Behaviour (ASBG) em Guimarães, sendo designado por projecto ASBGo. Estes desenvolvimentos incluem o projecto concetual, implementação e validação de andarilhos inteligentes com uma nova interface integrada nestes dispositivos. Esta interface é baseada num joystick e tem como objetivo a extração de intenções de comando do utilizador, sendo intuitiva e eficiente. Atende a aspectos de usabilidade e está focada numa aplicação comercial, não sendo exigente a nível cognitivo. Considerando o andarilho ASBGo, foi realizada a construção deste, bem como, ajustes mecânicos, eletrónicos e programação. É apresentada uma revisão sobre os dispositivos de assistência à marcha, tendo especial enfoque os andarilhos. Apesar da intensa investigação, na literatura não existem trabalhos que apresentem o ponto de situação desta área, bem como o seu papel na robótica de reabilitação. Depois foram realizados testes com utilizadores, mostrando a sensibilidade que o joytick tem na identificação de inteções de comando do utilizador. Além disso, os sinais apresentam uma componente de alta frequência que foi atenuada, no caso do NeoASAS, com um filtro g-h Benedict-Bordner, e no caso do ASBGo, através de um filtro Butterworth implementado em hardware. As metodologias apresentadas oferecem um cancelamento componentes indesejáveis, permitindo ao sistema a extração das intenções de comando do utilizador em tempo real. Desta forma, uma arquitetura de controlo baseada em fuzzy logic foi desenvolvida de maneira a fornecer uma assistência segura ao utilizador, através do controlo dos motores. Foram também integrados um conjunto de sensores no andarilho por razões de segurança: um sensor infravermelho para detetar a queda frontal do utilizador, dois sensores de força nos apoios de mão para detetar se o utilizador está a agarrá-los, e dois sensores de força nos suportes de antebraço para certificar que o utilizador está devidamente apoiado. Assim, foi concebido um dispositivo que garante a segurança do utilizador e oferece um certo grau de inteligência e tomada de decisão. Estes resultados serão utilizados para a criação de um produto comercial com custo acessível, mas com alta confiabilidade. A motivação deste trabalho reflete-se na contribuição que este dispositivo terá na melhoria da reabilitação e desenvolvimento de dispositivos ambulatórios para promover exercicios diários, e melhorar a vida dos utilizadores

    Adaptive shared-control of a robotic walker to improve human-robot cooperation in gait biomechanical rehabilitation

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (especialização em Eletrónica Médica)Sessões de reabilitação de pacientes com deficiências na marcha é importante para que a qualidade de vida dos mesmos seja recuperada. Quando auxiliadas por andarilhos robóticos inteligentes as sessões têm mostrado melhorias significativas, face aos resultados obtidos por métodos clássicos. O andarilho WALKit é um dos dispositivos mencionados e permite ser conduzido por parte do paciente enquanto um especialista supervisiona todo o processo de forma a evitar colisões e quedas. Este processo de supervisão é moroso e requer constante presença de um especialista para cada paciente. Nesta dissertação é proposto um controlador autónomo e inteligente capaz de partilhar a condução do andarilho pelo paciente e pelo supervisor evitando colisões com obstáculos. Para remover a necessidade constante do médico supervisor, um módulo de condução autónoma foi desenvolvido. O modo autónomo proposto usa um sensor Light Detection and Ranging e o algoritmo de Simultaneous Localization and Mapping (Cartographer) para obter mapas e a localização do andarilho. Seguidamente, os planeadores global e local , A* e Dynamic Window Approach respetivamente, traçam caminhos válidos para o destino, interpretáveis pelo andarilho. Usando o modo autónomo como especialista e as intenções do paciente, o controlador partilhado usa o algoritmo Proximal Policy Optimization, aprendendo o comportamento pretendido através de um processo de tentiva e erro, maximizando a recompensa recebida através de uma função pré-estabelecida. Uma rede neuronal com camadas convolucionais e lineares é capaz de inferir o risco enfrentado pelo sistema paciente-WALKit e determinar se o modo autónomo deve assumir controlo de forma a neutralizar o risco mencionado. Globalmente foram detetados erros inferiores a 38 cm no sistema de mapeamento e localização. Quer nos cenários de testagem do controlador autónomo, quer nos do controlador partilhado, nenhuma colisão foi registada garantindo em todas as tentativas a chegada ao destino escolhido. O modo autónomo, apesar de evitar obstáculos, não foi capaz de alcançar certos destinos não contemplados em ambientes de reabilitação. O modo partilhado mostrou também certas transições bruscas entre modo autónomo e intenção que podem comprometer a segurança do paciente. É necessário, como trabalho futuro, estabelecer métricas de validação objetivas e testar o controlador com pacientes de forma a corretamente estimar o desempenho.Rehabilitation sessions of patients with gait disabilities is important to restore quality of life. When aided by intelligent robotic walkers the sessions have shown significant improvements when compared to the results obtained by classical methods. The WALKit walker is one of the devices mentioned and allows the patient to drive it while a medical expert supervises the entire process in order to avoid collisions and falls. This supervision process takes time and requires constant presence of a medical expert for each patient. This dissertation proposes an intelligent controller capable of sharing the walker’s drivability by the patient and the supervisor, avoiding collisions with obstacles. To remove the constant need of a supervisor, an autonomous driving module was developed. The proposed autonomous mode uses a Light Detection and Ranging sensor and the Simultaneous Localization and Mapping (Cartographer ) algorithm to obtain maps and the location of the walker. Then, the global and local planners, A * and Dynamic Window Approach respectively, draw valid paths to the destination, interpretable by the walker. Using the autonomous mode as a expert and the patient’s intentions, the SC uses the Proximal Policy Optimization algorithm, learning the intended behavior through a trial and error process, maximizing the reward received through a pre-established function. One neural network with convolutional and linear layers is able to infer the risk faced by the patient-WALKit system and determine whether the autonomous mode should take control in order to neutralize the mentioned risk. Globally, errors smaller than 38 cm were detected in the mapping and localization system. In the testing scenarios of the autonomous controller and in the SC no collisions were recorded guaranteeing the arrival at the chosen destination in all attempts. The autonomous mode, despite avoiding obstacles, was not able to reach certain destinations not covered in rehabilitation environments. The shared mode has also shown certain sudden transitions between autonomous mode and intention that could compromise patient safety. It is necessary, as future work, to establish objective validation metrics and testing the controller with patients is necessary in order to correctly estimate performance

    First advances in near fall detection and prediction when using a walker

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)Falls are a major concern to society. Several injuries associated with falls need medical care, and in the worst-case scenario, a fall can lead to death. These consequences have a high cost for the population. In order to overcome these problems, a diversity of approaches for detection, prediction, and prevention of falls have been tackled. Walkers are often prescribed to subjects who present a higher risk of falling. Thus, it is essential to develop strategies to enhance the user's safety in an imminent danger situation. In this sense, this dissertation aims to develop a strategy to detect a near fall (NF) and its direction as well as the detection of incipient near fall (INF) while the subject uses a walker. Furthermore, it has the purpose of detecting two gait events, the heel strike (HS) and the toe-off (TO). The strategies established, in this work, were based on the data gathered through an inertial sensor placed on the lower trunk and force sensors placed on the insoles. Following data collection, the methodology adopted to identify the situations aforementioned was based on machine learning algorithms. In order to reach the model with best performance, many combinations of different classifiers were tested with three feature selection methods. Regarding the detection of NF, the results achieved presented a Matthews Correlation Coefficient (MCC) of 79.99% being possible to detect a NF 1.76±0.76s before its end. With the implementation of the post-processing algorithm, a large part of the false positives was eliminated being able to detect all NF 1.48±0.68s before its end. Concerning the models built to distinguish the direction of the NF, the best model presented accuracy of 58.97% being unable to reliably distinguish the three fall directions. The methodology followed, in this work, was unsuccessful to detect an INF. The best model presented MCC=23.87%, in this case. Lastly, with respect to the detection of HS and TO events the best model reached MCC=86.94%. With the application of the post-processing algorithm, part of misclassified samples was eliminated, however, a delay in the detection of the HS and TO events was introduced. With the post-processing it was possible to reach MCC=88.82%, not including the imposed delay.As quedas representam uma grande preocupação para a sociedade. Várias lesões associadas às quedas necessitam de cuidados médicos e, no pior dos casos, uma queda pode levar à morte. Estas consequências traduzem-se em custos elevados para a população. A fim de ultrapassar estes problemas, várias abordagens têm sido endereçadas para deteção, previsão e prevenção das quedas. Os andarilhos são muitas vezes prescritos a sujeitos que apresentam um risco de queda maior. Desta forma, é essencial desenvolver estratégias para aumentar a segurança do utilizador perante uma situação de perigo iminente. Neste sentido, esta dissertação visa desenvolver uma estratégia que permita a deteção de uma quase queda (NF) e a sua direção, assim como a deteção incipiente de uma NF (INF). Para além disso, tem o objetivo de detetar dois eventos de marcha, o heel strike (HS) e o toe-off (TO). As estratégias definidas, neste trabalho, basearam-se nos dados recolhidos através de um sensor inercial posicionado no tronco inferior e de sensores de força colocados nas palmilhas. Após a aquisição dos dados, a metodologia adotada para identificar as situações anteriormente referidas foi baseada em algoritmos de machine learning. Com o intuito de obter o modelo com melhor desempenho, várias combinações de diferentes classificadores foram testadas com três métodos de seleção de features. No que concerne à deteção da NF, os resultados alcançados apresentaram um Matthews Correlation Coefficient (MCC) de 79.99% sendo possível detetar uma NF 1.76±0.76s antes do seu final. Com a implementação do algoritmo de pós-processamento, grande parte dos falsos positivos foram eliminados, sendo possível detetar todas as NF 1.48±0.68s antes do seu final. Em relação aos modelos construídos para distinguir a direção da NF, o melhor modelo apresentou uma precisão (ACC) de 59.97%. A metodologia seguida neste trabalho não foi bem sucedida na deteção INF. O melhor modelo apresentou um MCC=23.87%. Relativamente à deteção dos eventos, HS e TO, o melhor modelo atingiu um MCC=86.94%. Com a aplicação do algoritmo de pós-processamento parte das amostras mal classificadas foram eliminadas, no entanto, foi introduzido um atraso na deteção do HS e do TO. Com o pós-processamento foi possível obter um MCC=88.82%, não incluindo o atraso imposto pelo pós-processamento

    Wearable and BAN Sensors for Physical Rehabilitation and eHealth Architectures

    Get PDF
    The demographic shift of the population towards an increase in the number of elderly citizens, together with the sedentary lifestyle we are adopting, is reflected in the increasingly debilitated physical health of the population. The resulting physical impairments require rehabilitation therapies which may be assisted by the use of wearable sensors or body area network sensors (BANs). The use of novel technology for medical therapies can also contribute to reducing the costs in healthcare systems and decrease patient overflow in medical centers. Sensors are the primary enablers of any wearable medical device, with a central role in eHealth architectures. The accuracy of the acquired data depends on the sensors; hence, when considering wearable and BAN sensing integration, they must be proven to be accurate and reliable solutions. This book is a collection of works focusing on the current state-of-the-art of BANs and wearable sensing devices for physical rehabilitation of impaired or debilitated citizens. The manuscripts that compose this book report on the advances in the research related to different sensing technologies (optical or electronic) and body area network sensors (BANs), their design and implementation, advanced signal processing techniques, and the application of these technologies in areas such as physical rehabilitation, robotics, medical diagnostics, and therapy

    Human-Robot Interaction Strategies for Walker-Assisted Locomotion

    Get PDF
    Neurological and age-related diseases affect human mobility at different levels causing partial or total loss of such faculty. There is a significant need to improve safe and efficient ambulation of patients with gait impairments. In this context, walkers present important benefits for human mobility, improving balance and reducing the load on their lower limbs. Most importantly, walkers induce the use of patients residual mobility capacities in different environments. In the field of robotic technologies for gait assistance, a new category of walkers has emerged, integrating robotic technology, electronics and mechanics. Such devices are known as robotic walkers, intelligent walkers or smart walkers One of the specific and important common aspects to the field of assistive technologies and rehabilitation robotics is the intrinsic interaction between the human and the robot. In this thesis, the concept of Human-Robot Interaction (HRI) for human locomotion assistance is explored. This interaction is composed of two interdependent components. On the one hand, the key role of a robot in a Physical HRI (pHRI) is the generation of supplementary forces to empower the human locomotion. This involves a net flux of power between both actors. On the other hand, one of the crucial roles of a Cognitive HRI (cHRI) is to make the human aware of the possibilities of the robot while allowing him to maintain control of the robot at all times. This doctoral thesis presents a new multimodal human-robot interface for testing and validating control strategies applied to a robotic walkers for assisting human mobility and gait rehabilitation. This interface extracts navigation intentions from a novel sensor fusion method that combines: (i) a Laser Range Finder (LRF) sensor to estimate the users legs kinematics, (ii) wearable Inertial Measurement Unit (IMU) sensors to capture the human and robot orientations and (iii) force sensors measure the physical interaction between the humans upper limbs and the robotic walker. Two close control loops were developed to naturally adapt the walker position and to perform body weight support strategies. First, a force interaction controller generates velocity outputs to the walker based on the upper-limbs physical interaction. Second, a inverse kinematic controller keeps the walker within a desired position to the human improving such interaction. The proposed control strategies are suitable for natural human-robot interaction as shown during the experimental validation. Moreover, methods for sensor fusion to estimate the control inputs were presented and validated. In the experimental studies, the parameters estimation was precise and unbiased. It also showed repeatability when speed changes and continuous turns were performed

    Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People

    Get PDF
    Facilitating navigation in pedestrian environments is critical for enabling people who are blind and visually impaired (BVI) to achieve independent mobility. A deep reinforcement learning (DRL)–based assistive guiding robot with ultrawide-bandwidth (UWB) beacons that can navigate through routes with designated waypoints was designed in this study. Typically, a simultaneous localization and mapping (SLAM) framework is used to estimate the robot pose and navigational goal; however, SLAM frameworks are vulnerable in certain dynamic environments. The proposed navigation method is a learning approach based on state-of-the-art DRL and can effectively avoid obstacles. When used with UWB beacons, the proposed strategy is suitable for environments with dynamic pedestrians. We also designed a handle device with an audio interface that enables BVI users to interact with the guiding robot through intuitive feedback. The UWB beacons were installed with an audio interface to obtain environmental information. The on-handle and on-beacon verbal feedback provides points of interests and turn-by-turn information to BVI users. BVI users were recruited in this study to conduct navigation tasks in different scenarios. A route was designed in a simulated ward to represent daily activities. In real-world situations, SLAM-based state estimation might be affected by dynamic obstacles, and the visual-based trail may suffer from occlusions from pedestrians or other obstacles. The proposed system successfully navigated through environments with dynamic pedestrians, in which systems based on existing SLAM algorithms have failed

    Secured force guidance of an omnidirectional non-holonomic platform

    Get PDF
    For robots to operate in real life settings, they must be able to physically interact with the environment, and for instance be able to react to force-guidance interactions. However, only a few research projects have addressed such capabilities, developing prototypes that have to be pushed from their handle bars. AZIMUT-3 is a novel omnidirectional non-holonomic mobile robot developed at IntRoLab (Intelligent, Interactive and Interdisciplinary Robot Lab, Université de Sherbrooke) with force-controlled active steering. This results in a horizontal suspension effect for which the mechanical impedance of the steering actuators can be controlled. This makes the platform ideal for developing physical guidance algorithms. One such algorithm is secured shared-control, making the platform go in the direction of the user pushing the robot while still making it move safely by avoiding obstacles. Such capability is somewhat novel in the field, and the objective is to provide safe navigation with maximum control to the user. This Master's thesis has two important contributions: an algorithm to estimate the applied efforts on AZIMUT-3 from torque measurements on its wheels; an algorithm to use these efforts with obstacle detection using laser range finder data to implement a safe, shared-control approach. Experimental results using the real platform demonstrate feasibility and safe control of the system, with performances similar to using a six degrees of freedom force sensor but at lower cost and with a broader area for shared control. Our implementation also resulted in coupling the simulation environment Webots with the ROS (Robot Operating System) library from Willow Garage, to help develop our approach in simulation before using AZIMUT-3. Overall, our work is the first in demonstrating how it is possible to naturally interact by physically moving or positioning a mobile platform in real life settings, a capability which could be useful for instance in the design of powered shopping carts or active walkers

    Optical Fiber Interferometric Sensors

    Get PDF
    The contributions presented in this book series portray the advances of the research in the field of interferometric photonic technology and its novel applications. The wide scope explored by the range of different contributions intends to provide a synopsis of the current research trends and the state of the art in this field, covering recent technological improvements, new production methodologies and emerging applications, for researchers coming from different fields of science and industry. The manuscripts published in the Special issue, and re-printed in this book series, report on topics that range from interferometric sensors for thickness and dynamic displacement measurement, up to pulse wave and spirometry applications
    corecore