8,190 research outputs found

    Distributed Random Convex Programming via Constraints Consensus

    Full text link
    This paper discusses distributed approaches for the solution of random convex programs (RCP). RCPs are convex optimization problems with a (usually large) number N of randomly extracted constraints; they arise in several applicative areas, especially in the context of decision under uncertainty, see [2],[3]. We here consider a setup in which instances of the random constraints (the scenario) are not held by a single centralized processing unit, but are distributed among different nodes of a network. Each node "sees" only a small subset of the constraints, and may communicate with neighbors. The objective is to make all nodes converge to the same solution as the centralized RCP problem. To this end, we develop two distributed algorithms that are variants of the constraints consensus algorithm [4],[5]: the active constraints consensus (ACC) algorithm, and the vertex constraints consensus (VCC) algorithm. We show that the ACC algorithm computes the overall optimal solution in finite time, and with almost surely bounded communication at each iteration. The VCC algorithm is instead tailored for the special case in which the constraint functions are convex also w.r.t. the uncertain parameters, and it computes the solution in a number of iterations bounded by the diameter of the communication graph. We further devise a variant of the VCC algorithm, namely quantized vertex constraints consensus (qVCC), to cope with the case in which communication bandwidth among processors is bounded. We discuss several applications of the proposed distributed techniques, including estimation, classification, and random model predictive control, and we present a numerical analysis of the performance of the proposed methods. As a complementary numerical result, we show that the parallel computation of the scenario solution using ACC algorithm significantly outperforms its centralized equivalent

    Deterministic continutation of stochastic metastable equilibria via Lyapunov equations and ellipsoids

    Full text link
    Numerical continuation methods for deterministic dynamical systems have been one of the most successful tools in applied dynamical systems theory. Continuation techniques have been employed in all branches of the natural sciences as well as in engineering to analyze ordinary, partial and delay differential equations. Here we show that the deterministic continuation algorithm for equilibrium points can be extended to track information about metastable equilibrium points of stochastic differential equations (SDEs). We stress that we do not develop a new technical tool but that we combine results and methods from probability theory, dynamical systems, numerical analysis, optimization and control theory into an algorithm that augments classical equilibrium continuation methods. In particular, we use ellipsoids defining regions of high concentration of sample paths. It is shown that these ellipsoids and the distances between them can be efficiently calculated using iterative methods that take advantage of the numerical continuation framework. We apply our method to a bistable neural competition model and a classical predator-prey system. Furthermore, we show how global assumptions on the flow can be incorporated - if they are available - by relating numerical continuation, Kramers' formula and Rayleigh iteration.Comment: 29 pages, 7 figures [Fig.7 reduced in quality due to arXiv size restrictions]; v2 - added Section 9 on Kramers' formula, additional computations, corrected typos, improved explanation

    A new Lenstra-type Algorithm for Quasiconvex Polynomial Integer Minimization with Complexity 2^O(n log n)

    Full text link
    We study the integer minimization of a quasiconvex polynomial with quasiconvex polynomial constraints. We propose a new algorithm that is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). This improvement is achieved by applying a new modern Lenstra-type algorithm, finding optimal ellipsoid roundings, and considering sparse encodings of polynomials. For the bounded case, our algorithm attains a time-complexity of s (r l M d)^{O(1)} 2^{2n log_2(n) + O(n)} when M is a bound on the number of monomials in each polynomial and r is the binary encoding length of a bound on the feasible region. In the general case, s l^{O(1)} d^{O(n)} 2^{2n log_2(n) +O(n)}. In each we assume d>= 2 is a bound on the total degree of the polynomials and l bounds the maximum binary encoding size of the input.Comment: 28 pages, 10 figure

    Enhancement of height system for Malaysia using space technology: the study of the datum bias inconsistencies in Peninsular Malaysia

    Get PDF
    The algorithm for orthometric height transfer using GPS has been widely presented. Its practical limitations are mostly due to datum bias inconsistencies and lack of precise geoid. In most applications, datum biases are assumed to be systematic over short baselines and therefore could be eliminated by differential heighting techniques. In this study, optimal algorithms were investigated to model biases between local vertical datum in Peninsular Malaysia and the datums implied by by EGM96, OSU91A and the regional Gravimetric Geoid in South_East Asia. The study has indicated that local vertical datum is not physically parallel to the datums implied by the above geoids. The shift parameters between the datums implied by the GPS/leveling data, and the EGM96, OSU91A and the gravimetric datums are about – 41cm, -54 cm and – 8 cm respectively. Also the maximum tilts of the planes fitting the residual geoids above these datums relative to GPS/Leveling datum are of the order of 36, 51 and 33 centimeters per degree. It is therefore necessary to take into account the effect of inconsistent datum bias particularly for baseline height transfer. The level of accuracy achieved by the bias corrected relative orthometric height differences of the EGM96, OSU91A and the gravimetric geoid models combined with GPS/leveling data for baseline lengths up to 36 km, is sufficient to replace the conventional tedious, time consuming ordinary leveling technique for rapid height transfer for land surveying and engineering applications

    A subsampling method for the computation of multivariate estimators with high breakdown point

    Get PDF
    All known robust location and scale estimators with high breakdown point for multivariate sample's are very expensive to compute. In practice, this computation has to be carried out using an approximate subsampling procedure. In this work we describe an alternative subsampling scheme, applicable to both the Stahel-Donoho estimator and the estimator based on the Minimum Volume Ellipsoid, with the property that the number of subsamples required is substantially reduced with respect to the standard subsampling procedures used in both cases. We also discuss some bias and variability properties of the estimator obtained from the proposed subsampling process

    Experimental Comparisons of Derivative Free Optimization Algorithms

    Get PDF
    In this paper, the performances of the quasi-Newton BFGS algorithm, the NEWUOA derivative free optimizer, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the Differential Evolution (DE) algorithm and Particle Swarm Optimizers (PSO) are compared experimentally on benchmark functions reflecting important challenges encountered in real-world optimization problems. Dependence of the performances in the conditioning of the problem and rotational invariance of the algorithms are in particular investigated.Comment: 8th International Symposium on Experimental Algorithms, Dortmund : Germany (2009
    • …
    corecore