4,299 research outputs found

    Metaplectic covers of GLₙ and the Gauss-Schering lemma

    Get PDF
    The Gauss-Schering Lemma is a classical formula for the Legendre symbol commonly used in elementary proofs of the quadratic reciprocity law. In this paper we show how the Gauss Schering Lemma may be generalized to give a formula for a 2-cocycle corresponding to a higher metaplectic extension of GLn/k for any global field k. In the case that k has positive characteristic, our formula gives a complete construction of the metaplectic group and consequently an independent proof of the power reciprocity law for k

    Elementární důkaz věty o primitivním prvku

    Get PDF
    Názov práce: Elementárny dôkaz vety o primitívnom prvku Autor: Miroslav Majerčík Katedra / Ústav: Katedra algebry Vedúcí bakalárskej práce: prof. RNDr. Tomáš Kepka, DrSc. Abstrakt: Tento text je venovaný elementárnym dôkazom dvoch významných viet teórie čísel a to Gaussovmu kvadratickému zákonu reciprocity a vete o primitívnom prvku. Dôkazy týchto viet sú vo forme menších na seba nadväzujúcich lemmat a dôkazov. Úvod je venovaný historickému priblíženiu a metóde dôkazov viet. Prvá kapitola smeruje k dôkazu Gaussovmu kvadratickému zákonu reciprocity a druhá k dôkazu vety o primitívnom prvku a k určeniu prirodzených čísel n pre ktoré existuje primitívny prvok modulo n a pre ktoré nie. K dôkazu týchto viet bolo potrebné dokázat aj niekol'ko dalších viet, napríklad malú Fermatovu vetu alebo schému rozdielu mocnín. Klúčové slová: Kvadratický zbytok, Primitívny koreň, Rád prvku modulo n, Eulerova funkcia Title: An elementary proof of the existence of primitive elements Author: Miroslav Majerčík Department: Department of Algebra Supervisor: prof. RNDr. Tomáš Kepka, DrSc. Abstract: This text is about elementary proofs of two well known number theory statements, Gauss quadratic reciprocity law and proof of the existence of primitive elements....Vedúcí bakalárskej práce: prof. RNDr. Tomáš Kepka, DrSc. Abstrakt: Tento text je venovaný elementárnym dôkazom dvoch významných viet teórie čísel a to Gaussovmu kvadratickému zákonu reciprocity a vete o primitívnom prvku. Dôkazy týchto viet sú vo forme menších na seba nadväzujúcich lemmat a dôkazov. Úvod je venovaný historickému priblíženiu a metóde dôkazov viet. Prvá kapitola smeruje k dôkazu Gaussovmu kvadratickému zákonu reciprocity a druhá k dôkazu vety o primitívnom prvku a k určeniu prirodzených čísel n pre ktoré existuje primitívny prvok modulo n a pre ktoré nie. K dôkazu týchto viet bolo potrebné dokázat aj niekol'ko dalších viet, napríklad malú Fermatovu vetu alebo schému rozdielu mocnín. Klúčové slová: Kvadratický zbytok, Primitívny koreň, Rád prvku modulo n, Eulerova funkcia Title: An elementary proof of the existence of primitive elements Author: Miroslav Majerčík Department: Department of Algebra Supervisor: prof. RNDr. Tomáš Kepka, DrSc. Abstract: This text is about elementary proofs of two well known number theory statements, Gauss quadratic reciprocity law and proof of the existence of primitive elements. These proofs are in form of simpler interlinked lemmas and proofs. Introduction is about historical background and about...Department of AlgebraKatedra algebryFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth

    Get PDF
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss and Eisenstein, and a sophisticated proof using algebraic number theory, due to Hilbert. Philosophers have yet to look carefully at such explanatory disagreements in mathematics. I do so here. According to the view I defend, there are two important explanatory virtues—depth and transparency—which different proofs (and other potential explanations) possess to different degrees. Although not mutually exclusive in principle, the packages of features associated with the two stand in some tension with one another, so that very deep explanations are rarely transparent, and vice versa. After developing the theory of depth and transparency and applying it to the case of quadratic reciprocity, I draw some morals about the nature of mathematical explanation

    A Supplement to Scholz's Reciprocity Law

    Full text link
    In this note we will present a supplement to Scholz's reciprocity law and discuss applications to the structure of 2-class groups of quadratic number fields

    Harbingers of Artin's Reciprocity Law. III. Gauss's Lemma and Artin's Transfer

    Full text link
    We briefly review Artin's reciprocity law in the classical ideal theoretic language, and then study connections between Artin's reciprocity law and the proofs of the quadratic reciprocity law using Gauss's Lemma
    corecore