11 research outputs found

    Automatic Sequences and Zip-Specifications

    Full text link
    We consider infinite sequences of symbols, also known as streams, and the decidability question for equality of streams defined in a restricted format. This restricted format consists of prefixing a symbol at the head of a stream, of the stream function `zip', and recursion variables. Here `zip' interleaves the elements of two streams in alternating order, starting with the first stream. For example, the Thue-Morse sequence is obtained by the `zip-specification' {M = 0 : X, X = 1 : zip(X,Y), Y = 0 : zip(Y,X)}. Our analysis of such systems employs both term rewriting and coalgebraic techniques. We establish decidability for these zip-specifications, employing bisimilarity of observation graphs based on a suitably chosen cobasis. The importance of zip-specifications resides in their intimate connection with automatic sequences. We establish a new and simple characterization of automatic sequences. Thus we obtain for the binary zip that a stream is 2-automatic iff its observation graph using the cobasis (hd,even,odd) is finite. The generalization to zip-k specifications and their relation to k-automaticity is straightforward. In fact, zip-specifications can be perceived as a term rewriting syntax for automatic sequences. Our study of zip-specifications is placed in an even wider perspective by employing the observation graphs in a dynamic logic setting, leading to an alternative characterization of automatic sequences. We further obtain a natural extension of the class of automatic sequences, obtained by `zip-mix' specifications that use zips of different arities in one specification. We also show that equivalence is undecidable for a simple extension of the zip-mix format with projections like even and odd. However, it remains open whether zip-mix specifications have a decidable equivalence problem

    An exercise on the generation of many-valued dynamic logics

    Get PDF
    In the last decades, dynamic logics have been used in different domains as a suitable formalism to reason about and specify a wide range of systems. On the other hand, logics with many-valued semantics are emerging as an interesting tool to handle devices and scenarios where uncertainty is a prime concern. This paper contributes towards the combination of these two aspects through the development of a method for the systematic construction of many-valued dynamic logics. Technically, the method is parameterised by an action lattice that defines both the computational paradigm and the truth space (corresponding to the underlying Kleene algebra and residuated lattices, respectively)

    Seeing, Knowing, doing : case studies in modal logic

    Get PDF
    Dans le domaine des jeux vidéos par exemple, surtout des jeux de rôles, les personnages virtuels perçoivent un environnement, en tirent des connaissances puis effectuent des actions selon leur besoin. De même en robotique, un robot perçoit son environnement à l'aide de capteurs/caméras, établit une base de connaissances et effectuent des mouvements etc. La description des comportements de ces agents virtuels et leurs raisonnements peut s'effectuer à l'aide d'un langage logique. Dans cette thèse, on se propose de modéliser les trois aspects "voir", "savoir" et "faire" et leurs interactions à l'aide de la logique modale. Dans une première partie, on modélise des agents dans un espace géométrique puis on définit une relation épistémique qui tient compte des positions et du regard des agents. Dans une seconde partie, on revisite la logique des actions "STIT" (see-to-it-that ou "faire en sorte que") qui permet de faire la différence entre les principes "de re" et "de dicto", contrairement à d'autres logiques modales des actions. Dans une troisième partie, on s'intéresse à modéliser quelques aspects de la théorie des jeux dans une variante de la logique "STIT" ainsi que des émotions contre-factuelles comme le regret. Tout au long de cette thèse, on s'efforcera de s'intéresser aux aspects logiques comme les complétudes des axiomatisations et la complexité du problème de satisfiabilité d'une formule logique. L'intégration des trois concepts "voir", "savoir" et "faire" dans une et une seule logique est évoquée en conclusion et reste une question ouverte.Agents are entities who perceive their environment and who perform actions. For instance in role playing video games, ennemies are agents who perceive some part of the virtual world and who can attack or launch a sortilege. Another example may concern robot assistance for disabled people: the robot perceives obstacles of the world and can alert humans or help them. Here, we try to give formal tools to model knowledge reasoning about the perception of their environment and about actions based, on modal logic. First, we give combine the standard epistemic modal logic with perception constructions of the form (agent a sees agent b). We give a semantics in terms of position and orientation of the agents in the space that can be a line (Lineland) or a plane (Flatland). Concerning Lineland, we provide a complete axiomatization and an optimal procedure for model-checking and satisfiability problem. Concerning Flatland, we show that both model-checking and satisfiability problem are decidable but the exact complexities and the axiomatization remain open problems. Thus, the logics of Lineland and Flatland are completely a new approach: their syntax is epistemic but their semantics concern spatial reasoning. Secondly, we study on the logic of agency ``see-to-it-that'' STIT made up of construction of the form [J]A standing for ``the coalition of agents J sees to it that A''. Our interest is motivated: STIT is strictly more expressive that standard modal logic for agency like Coalition Logic CL or Alternating-time Temporal Logic ATL. In CL or ATL the ``de re'' and ``de dicto'' problem is quite difficult and technical whereas if we combine STIT-operators with epistemic operators, we can solve it in a natural way. However this strong expressivity has a prize: the general version of STIT is undecidable. That is why we focus on some syntactic fragments of STIT: either we restrict the allowed coalitions J in constructions [J]A or we restrict the nesting of modal STIT-operators. We provide axiomatizations and complexity results. Finally, we give flavour to epistemic modal logic by adding STIT-operators. The logic STIT is suitable to express counterfactual statements like ``agent a could have choosen an action such that A have been true''. Thus we show how to model counterfactual emotions like regret, rejoicing, disappointment and elation in this framework. We also model epistemic games by adapting the logic STIT by giving explicitely names of actions in the language. In this framework, we can model the notion of rational agents but other kind of behaviour like altruism etc., Nash equilibrium and iterated deletion of strictly dominated strategies

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    Strongly Correlated Systems Under High Magnetic Field: A Mixed Landau Levels Description for Fractional Quantum Hall Effect

    Get PDF
    Strong correlation among electrons under high magnetic field gives rise to an entirely new arena of emergent physics, namely fractional quantum Hall effect. Such systems have entirely different elementary degrees of freedom and generally, demand non-perturbative approaches to develop a better understanding. In the literature, there are several analytical methodologies and numerical toolkits available to study such a system. Clustering of zeros, parent Hamiltonian, off-diagonal order parameter, parton construction, matrix product states are to be named among a few of those popular methodologies in the existing literature. Most of these methods work well in the lowest Landau level or holomorphic wavefunction framework. It is, however, imperative to develop such methodology to study systems with Landau levels mixing to study more exotic as well as experimentally relevant states. In this work, we have developed particular methodologies, which denounce the traditional importance of the analytic properties of first quantized model wavefunction thereby extend the existing parent Hamiltonian, topological order-parameter, matrix product states descriptions to mixed Landau level systems. Such extension produces a deeper, compact and holistic understanding of universal physics of exotic phases in strongly correlated systems from the microscopic viewpoint, as well as produces interesting new results. Our second quantized/ non-analytic approach allows us to construct the ``entangled Pauli principle , a guidebook to extract universal/topological properties such as braiding statistics, fractional charge quantization, topological degeneracy of the ground states starting from a relatively simple many-body wavefunction, ``root pattern of fractional quantum Hall state. Such an entangled Pauli principle can be derived from a microscopic parent Hamiltonian setting, thereby provide us a potential tool to probe the non-universal physics in quantum Hall fluids as well. Essentially, entangled Pauli principle is the ``DNA of fractional quantum Hall states. Using this guiding principle, we have shown ground states with non-abelian excitations, such as Majorana fermion or Fibonacci fermion can be stabilized for two-particle interaction. Fibonacci fermion supports universal quantum gates, thereby a potential candidate for the topologically protected universal quantum computer. Entangled Pauli principle, along with a recently developed topological order parameter for composite fermions, gives rise to Parent Hamiltonian description for composite fermions as well

    Voir, savoir, faire : une étude de cas en logique modale

    Get PDF
    Agents are entities who perceive their environment and who perform actions. For instance in role playing video games, ennemies are agents who perceive some part of the virtual world and who can attack or launch a sortilege. Another example may concern robot assistance for disabled people: the robot perceives obstacles of the world and can alert humans or help them. Here, we try to give formal tools to model knowledge reasoning about the perception of their environment and about actions based, on modal logic. First, we give combine the standard epistemic modal logic with perception constructions of the form (agent a sees agent b). We give a semantics in terms of position and orientation of the agents in the space that can be a line (Lineland) or a plane (Flatland). Concerning Lineland, we provide a complete axiomatization and an optimal procedure for model-checking and satisfiability problem. Concerning Flatland, we show that both model-checking and satisfiability problem are decidable but the exact complexities and the axiomatization remain open problems. Thus, the logics of Lineland and Flatland are completely a new approach: their syntax is epistemic but their semantics concern spatial reasoning. Secondly, we study on the logic of agency ''see-to-it-that'' STIT made up of construction of the form [J]A standing for ''the coalition of agents J sees to it that A''. Our interest is motivated: STIT is strictly more expressive that standard modal logic for agency like Coalition Logic CL or Alternating-time Temporal Logic ATL. In CL or ATL the ''de re'' and ''de dicto'' problem is quite difficult and technical whereas if we combine STIT-operators with epistemic operators, we can solve it in a natural way. However this strong expressivity has a prize: the general version of STIT is undecidable. That is why we focus on some syntactic fragments of STIT: either we restrict the allowed coalitions J in constructions [J]A or we restrict the nesting of modal STIT-operators. We provide axiomatizations and complexity results. Finally, we give flavour to epistemic modal logic by adding STIT-operators. The logic STIT is suitable to express counterfactual statements like ''agent a could have choosen an action such that A have been true''. Thus we show how to model counterfactual emotions like regret, rejoicing, disappointment and elation in this framework. We also model epistemic games by adapting the logic STIT by giving explicitely names of actions in the language. In this framework, we can model the notion of rational agents but other kind of behaviour like altruism etc., Nash equilibrium and iterated deletion of strictly dominated strategies.Dans le domaine des jeux vidéos par exemple, surtout des jeux de rôles, les personnages virtuels perçoivent un environnement, en tirent des connaissances puis effectuent des actions selon leur besoin. De même en robotique, un robot perçoit son environnement à l'aide de capteurs/caméras, établit une base de connaissances et effectuent des mouvements etc. La description des comportements de ces agents virtuels et leurs raisonnements peut s'effectuer à l'aide d'un langage logique. Dans cette thèse, on se propose de modéliser les trois aspects ''voir'', ''savoir'' et ''faire'' et leurs interactions à l'aide de la logique modale. Dans une première partie, on modélise des agents dans un espace géométrique puis on définit une relation épistémique qui tient compte des positions et du regard des agents. Dans une seconde partie, on revisite la logique des actions ''STIT'' (see-to-it-that ou ''faire en sorte que'') qui permet de faire la différence entre les principes ''de re'' et ''de dicto'', contrairement à d'autres logiques modales des actions. Dans une troisième partie, on s'intéresse à modéliser quelques aspects de la théorie des jeux dans une variante de la logique ''STIT'' ainsi que des émotions contre-factuelles comme le regret. Tout au long de cette thèse, on s'efforcera de s'intéresser aux aspects logiques comme les complétudes des axiomatisations et la complexité du problème de satisfiabilité d'une formule logique. L'intégration des trois concepts ''voir'', ''savoir'' et ''faire'' dans une et une seule logique est évoquée en conclusion et reste une question ouverte

    Information sharing among ideal agents

    Get PDF
    Multi-agent systems operating in complex domains crucially require agents to interact with each other. An important result of this interaction is that some of the private knowledge of the agents is being shared in the group of agents. This thesis investigates the theme of knowledge sharing from a theoretical point of view by means of the formal tools provided by modal logic. More specifically this thesis addresses the following three points. First, the case of hypercube systems, a special class of interpreted systems as defined by Halpern and colleagues, is analysed in full detail. It is here proven that the logic S5WDn constitutes a sound and complete axiomatisation for hypercube systems. This logic, an extension of the modal system S5n commonly used to represent knowledge of a multi-agent system, regulates how knowledge is being shared among agents modelled by hypercube systems. The logic S5WDn is proven to be decidable. Hypercube systems are proven to be synchronous agents with perfect recall that communicate only by broadcasting, in separate work jointly with Ron van der Meyden not fully reported in this thesis. Second, it is argued that a full spectrum of degrees of knowledge sharing can be present in any multi-agent system, with no sharing and full sharing at the extremes. This theme is investigated axiomatically and a range of logics representing a particular class of knowledge sharing between two agents is presented. All the logics but two in this spectrum are proven complete by standard canonicity proofs. We conjecture that these two remaining logics are not canonical and it is an open problem whether or not they are complete. Third, following a influential position paper by Halpern and Moses, the idea of refining and checking of knowledge structures in multi-agent systems is investigated. It is shown that, Kripke models, the standard semantic tools for this analysis are not adequate and an alternative notion, Kripke trees, is put forward. An algorithm for refining and checking Kripke trees is presented and its major properties investigated. The algorithm succeeds in solving the famous muddy-children puzzle, in which agents communicate and reason about each other's knowledge. The thesis concludes by discussing the extent to which combining logics, a promising new area in pure logic, can provide a significant boost in research for epistemic and other theories for multi-agent systems

    Strongly Correlated Systems Under High Magnetic Field: A Mixed Landau Levels Description for Fractional Quantum Hall Effect

    Get PDF
    Strong correlation among electrons under high magnetic field gives rise to an entirely new arena of emergent physics, namely fractional quantum Hall effect. Such systems have entirely different elementary degrees of freedom and generally, demand non-perturbative approaches to develop a better understanding. In the literature, there are several analytical methodologies and numerical toolkits available to study such a system. Clustering of zeros, parent Hamiltonian, off-diagonal order parameter, parton construction, matrix product states are to be named among a few of those popular methodologies in the existing literature. Most of these methods work well in the lowest Landau level or holomorphic wavefunction framework. It is, however, imperative to develop such methodology to study systems with Landau levels mixing to study more exotic as well as experimentally relevant states. In this work, we have developed particular methodologies, which denounce the traditional importance of the analytic properties of first quantized model wavefunction thereby extend the existing parent Hamiltonian, topological order-parameter, matrix product states descriptions to mixed Landau level systems. Such extension produces a deeper, compact and holistic understanding of universal physics of exotic phases in strongly correlated systems from the microscopic viewpoint, as well as produces interesting new results. Our second quantized/ non-analytic approach allows us to construct the ``entangled Pauli principle , a guidebook to extract universal/topological properties such as braiding statistics, fractional charge quantization, topological degeneracy of the ground states starting from a relatively simple many-body wavefunction, ``root pattern of fractional quantum Hall state. Such an entangled Pauli principle can be derived from a microscopic parent Hamiltonian setting, thereby provide us a potential tool to probe the non-universal physics in quantum Hall fluids as well. Essentially, entangled Pauli principle is the ``DNA of fractional quantum Hall states. Using this guiding principle, we have shown ground states with non-abelian excitations, such as Majorana fermion or Fibonacci fermion can be stabilized for two-particle interaction. Fibonacci fermion supports universal quantum gates, thereby a potential candidate for the topologically protected universal quantum computer. Entangled Pauli principle, along with a recently developed topological order parameter for composite fermions, gives rise to Parent Hamiltonian description for composite fermions as well
    corecore