1,247 research outputs found

    Coboundary and Cosystolic Expansion from Strong Symmetry

    Get PDF
    Coboundary and cosystolic expansion are notions of expansion that generalize the Cheeger constant or edge expansion of a graph to higher dimensions. The classical Cheeger inequality implies that for graphs edge expansion is equivalent to spectral expansion. In higher dimensions this is not the case: a simplicial complex can be spectrally expanding but not have high dimensional edge-expansion. The phenomenon of high dimensional edge expansion in higher dimensions is much more involved than spectral expansion, and is far from being understood. In particular, prior to this work, the only known bounded degree cosystolic expanders were derived from the theory of buildings that is far from being elementary. In this work we study high dimensional complexes which are strongly symmetric. Namely, there is a group that acts transitively on top dimensional cells of the simplicial complex [e.g., for graphs it corresponds to a group that acts transitively on the edges]. Using the strong symmetry, we develop a new machinery to prove coboundary and cosystolic expansion. It was an open question whether the recent elementary construction of bounded degree spectral high dimensional expanders based on coset complexes give rise to bounded degree cosystolic expanders. In this work we answer this question affirmatively. We show that these complexes give rise to bounded degree cosystolic expanders in dimension two, and that their links are (two-dimensional) coboundary expanders. We do so by exploiting the strong symmetry properties of the links of these complexes using a new machinery developed in this work. Previous works have shown a way to bound the co-boundary expansion using strong symmetry in the special situation of "building like" complexes. Our new machinery shows how to get coboundary expansion for general strongly symmetric coset complexes, which are not necessarily "building like", via studying the (Dehn function of the) presentation of the symmetry group of these complexes

    Finite Simple Groups as Expanders

    Full text link
    We prove that there exist k∈Nk\in N and 0<ϵ∈R0<\epsilon\in R such that every non-abelian finite simple group GG, which is not a Suzuki group, has a set of kk generators for which the Cayley graph \Cay(G; S) is an ϵ\epsilon-expander.Comment: 10 page

    High-Dimensional Expanders from Expanders

    Get PDF
    We present an elementary way to transform an expander graph into a simplicial complex where all high order random walks have a constant spectral gap, i.e., they converge rapidly to the stationary distribution. As an upshot, we obtain new constructions, as well as a natural probabilistic model to sample constant degree high-dimensional expanders. In particular, we show that given an expander graph G, adding self loops to G and taking the tensor product of the modified graph with a high-dimensional expander produces a new high-dimensional expander. Our proof of rapid mixing of high order random walks is based on the decomposable Markov chains framework introduced by [Jerrum et al., 2004]

    Explicit expanders with cutoff phenomena

    Full text link
    The cutoff phenomenon describes a sharp transition in the convergence of an ergodic finite Markov chain to equilibrium. Of particular interest is understanding this convergence for the simple random walk on a bounded-degree expander graph. The first example of a family of bounded-degree graphs where the random walk exhibits cutoff in total-variation was provided only very recently, when the authors showed this for a typical random regular graph. However, no example was known for an explicit (deterministic) family of expanders with this phenomenon. Here we construct a family of cubic expanders where the random walk from a worst case initial position exhibits total-variation cutoff. Variants of this construction give cubic expanders without cutoff, as well as cubic graphs with cutoff at any prescribed time-point.Comment: 17 pages, 2 figure
    • …
    corecore