15,983 research outputs found

    An elementary approach to rigorous approximation of invariant measures

    Full text link
    We describe a framework in which is possible to develop and implement algorithms for the approximation of invariant measures of dynamical systems with a given bound on the error of the approximation. Our approach is based on a general statement on the approximation of fixed points for operators between normed vector spaces, allowing an explicit estimation of the error. We show the flexibility of our approach by applying it to piecewise expanding maps and to maps with indifferent fixed points. We show how the required estimations can be implemented to compute invariant densities up to a given error in the L1L^{1} or L∞L^\infty distance. We also show how to use this to compute an estimation with certified error for the entropy of those systems. We show how several related computational and numerical issues can be solved to obtain working implementations, and experimental results on some one dimensional maps.Comment: 27 pages, 10 figures. Main changes: added a new section in which we apply our method to Manneville-Pomeau map

    An elementary way to rigorously estimate convergence to equilibrium and escape rates

    Full text link
    We show an elementary method to have (finite time and asymptotic) computer assisted explicit upper bounds on convergence to equilibrium (decay of correlations) and escape rate for systems satisfying a Lasota Yorke inequality. The bounds are deduced by the ones of suitable approximations of the system's transfer operator. We also present some rigorous experiment showing the approach and some concrete result.Comment: 14 pages, 6 figure

    A Rigorous Computational Approach to Linear Response

    Get PDF
    We present a general setting in which the formula describing the linear response of the physical measure of a perturbed system can be obtained. In this general setting we obtain an algorithm to rigorously compute the linear response. We apply our results to expanding circle maps. In particular, we present examples where we compute, up to a pre-specified error in the L∞L^{\infty}-norm, the response of expanding circle maps under stochastic and deterministic perturbations. Moreover, we present an example where we compute, up to a pre-specified error in the L1L^1-norm, the response of the intermittent family at the boundary; i.e., when the unperturbed system is the doubling map.Comment: Revised version following reports. A new example which contains the computation of the linear response at the boundary of the intermittent family has been adde

    Rigorous approximation of diffusion coefficients for expanding maps

    Get PDF
    We use Ulam's method to provide rigorous approximation of diffusion coefficients for uniformly expanding maps. An algorithm is provided and its implementation is illustrated using Lanford's map.Comment: In this version Lanford's map has been used to illustrate the computer implementation of the algorithm. To appear in Journal of Statistical Physic

    Statistical properties of dynamics. Introduction to the functional analytic approach

    Full text link
    These are lecture notes for a simple minicourse approaching the satistical properties of a dynamical system by the study of the associated transfer operator (considered on a suitable function space). The following questions will be addressed: * existence of a regular invariant measure; * Lasota Yorke inequalities and spectral gap; * decay of correlations and some limit theorem; * stability under perturbations of the system; * linear response; * hyperbolic systems. The point of view taken is to present the general construction and ideas needed to obtain these results in the simplest way. For this, some theorem is proved in a form which is weaker than usually known, but with an elementary and simple proof. These notes are intended for the Hokkaido-Pisa University summer course 2017.Comment: I decided to make these lecture notes public because it will be cited in some research paper. I hope these will be useful for some reader. In this new version several new topics are added, with some original approac

    Projection operator formalism and entropy

    Full text link
    The entropy definition is deduced by means of (re)deriving the generalized non-linear Langevin equation using Zwanzig projector operator formalism. It is shown to be necessarily related to an invariant measure which, in classical mechanics, can always be taken to be the Liouville measure. It is not true that one is free to choose a ``relevant'' probability density independently as is done in other flavors of projection operator formalism. This observation induces an entropy expression which is valid also outside the thermodynamic limit and in far from equilibrium situations. The Zwanzig projection operator formalism therefore gives a deductive derivation of non-equilibrium, and equilibrium, thermodynamics. The entropy definition found is closely related to the (generalized) microcanonical Boltzmann-Planck definition but with some subtle differences. No ``shell thickness'' arguments are needed, nor desirable, for a rigorous definition. The entropy expression depends on the choice of macroscopic variables and does not exactly transform as a scalar quantity. The relation with expressions used in the GENERIC formalism are discussed

    Spike trains statistics in Integrate and Fire Models: exact results

    Get PDF
    We briefly review and highlight the consequences of rigorous and exact results obtained in \cite{cessac:10}, characterizing the statistics of spike trains in a network of leaky Integrate-and-Fire neurons, where time is discrete and where neurons are subject to noise, without restriction on the synaptic weights connectivity. The main result is that spike trains statistics are characterized by a Gibbs distribution, whose potential is explicitly computable. This establishes, on one hand, a rigorous ground for the current investigations attempting to characterize real spike trains data with Gibbs distributions, such as the Ising-like distribution, using the maximal entropy principle. However, it transpires from the present analysis that the Ising model might be a rather weak approximation. Indeed, the Gibbs potential (the formal "Hamiltonian") is the log of the so-called "conditional intensity" (the probability that a neuron fires given the past of the whole network). But, in the present example, this probability has an infinite memory, and the corresponding process is non-Markovian (resp. the Gibbs potential has infinite range). Moreover, causality implies that the conditional intensity does not depend on the state of the neurons at the \textit{same time}, ruling out the Ising model as a candidate for an exact characterization of spike trains statistics. However, Markovian approximations can be proposed whose degree of approximation can be rigorously controlled. In this setting, Ising model appears as the "next step" after the Bernoulli model (independent neurons) since it introduces spatial pairwise correlations, but not time correlations. The range of validity of this approximation is discussed together with possible approaches allowing to introduce time correlations, with algorithmic extensions.Comment: 6 pages, submitted to conference NeuroComp2010 http://2010.neurocomp.fr/; Bruno Cessac http://www-sop.inria.fr/neuromathcomp
    • …
    corecore