1,315 research outputs found

    Potential contributions of noncontact atomic force microscopy for the future Casimir force measurements

    Full text link
    Surface electric noise, i.e., the non-uniform distribution of charges and potentials on a surface, poses a great experimental challenge in modern precision force measurements. Such a challenge is encountered in a number of different experimental circumstances. The scientists employing atomic force microscopy (AFM) have long focused their efforts to understand the surface-related noise issues via variants of AFM techniques, such as Kelvin probe force microscopy or electric force microscopy. Recently, the physicists investigating quantum vacuum fluctuation phenomena between two closely-spaced objects have also begun to collect experimental evidence indicating a presence of surface effects neglected in their previous analyses. It now appears that the two seemingly disparate science communities are encountering effects rooted in the same surface phenomena. In this report, we suggest specific experimental tasks to be performed in the near future that are crucial not only for fostering needed collaborations between the two communities, but also for providing valuable data on the surface effects in order to draw the most realistic conclusion about the actual contribution of the Casimir force (or van der Waals force) between a pair of real materials.Comment: The paper appeared in the Proceedings to the 12th International Conference on Noncontact Atomic Force Microscopy (NC-AFM 2009) and Casimir 2009 Satellite Worksho

    Advanced Scanning Tunneling Microscopy for Nanoscale Analysis of Semiconductor Devices

    Get PDF
    Significant attention has been addressed to high-spatial resolution analysis of modern sub-100-nm electronic devices to achieve new functions and energy-efficient operations. The chapter presents a review of ongoing research on charge carrier distribution analysis in nanoscale Si devices by using scanning tunneling microscopy (STM) employing advanced operation modes: a gap-modulation method, a molecule-assisted probing method, and a dual-imaging method. The described methods rely on detection and analysis of tunneling current, which is strongly localized within an atomic dimension. Representative examples of applications to nanoscale analysis of Si device cross-sections and nanowires are given. Advantages, difficulties, and limitations of the advanced STM methods are discussed in comparison with other techniques used in a field of device metrology

    Kelvin Probe Microscopy Studies of Epitaxial Graphene on SiC(0001)

    Get PDF
    Epitaxial graphene on SiC(0001) presents a promising platform for device applications and fundamental investigations. Graphene growth on SiC(0001) can produce consistent monolayer thickness on terraces and good electronic properties. In exfoliated graphene on SiO2, random charged impurities in the SiO2 surface are thought to be the dominant scatterers, explaining the observed transport properties as well as the spatial charge inhomogeneity seen in scanned-probe experiments. In contrast, the scattering mechanisms and charge distribution in epitaxial graphene remain relatively unexplored. Here I use Kelvin probe microscopy (KPM) in ambient and UHV conditions to directly measure the surface potential of epitaxial graphene on SiC(0001). Ambient-environment KPM on graphene/SiC(0001) shows surface potential variations of only 12 meV. Taken together with transport measurements, the data suggest that the graphene samples in ambient are in the low-doped regime, near the minimum conductivity of roughly 4e2/h. I am also able to use UHV KPM of graphene/ SiC(0001) to identify the discrete surface potentials of monolayer and bilayer graphene as well as the insulating interfacial carbon layer and bare SiC, correlated with scanning electron micrographs of the same location. The surface potential differences between monolayer and bilayer graphene and between IFL and monolayer graphene are both suggestive of low doping (≤1012 cm-2). The surface potentials of monolayer and bilayer graphene are relatively smooth, while the IFL and bare SiC, in contrast, showed larger variations in surface potential suggesting the presence of unscreened charged impurities present on the IFL that are later screened by the overgrown graphene. I model the potential variations for unscreened and graphene-screened charged impurities using the self-consistent theory of graphene developed by Adam et al. The results show that although surface potential variations are, as expected, larger in the IFL than in graphene, both surfaces display surface potential variations 10-40 times smaller than predicted by theory. While ambient electronic transport data and surface potential steps suggest our samples are only lightly doped (≤1012 cm-2), in a regime dominated by electron-hole puddles, we do not observe these puddles in UHV. The absence of puddles in UHV leaves the source of doping in these samples an open question

    Studies of the Properties of Designed Nanoparticles Using Atomic Force Microscopy

    Get PDF
    The purpose of the research in this dissertation was to elucidate the intrinsic properties of how nanoparticles are different from bulk materials. This was done by mechanical and electronic studies of the properties of designed nanoparticles using advanced modes of atomic force microscopy. Information relating to the work functions, contact potential difference, Young’s Moduli, elasticity, and viscoelasticity can be investigated using state-of-the-art atomic force microscope (AFM) experiments. Subsurface imaging of polystyrene encapsulated cobalt nanoparticles was achieved for the first time using Force Modulation Microscopy (FMM) in conjunction with contact mode AFM. Previously prepared sample of polystyrene coated cobalt nanoparticles were studied. Tapping-mode AFM was used to evaluate the size of coated nanoparticles. Force modulation microscopy was used to visualize details of the outer polystyrene coating. Differences between the softer polystyrene outer coating and the harder cobalt nanoparticle core was visualized based upon the elastic and viscoelastic properties. Variances in sample elasticity were monitored via the amplitude channel that monitors the oscillation amplitude of the cantilever while scanning. Viscoelastic differences were mapped by the phase channel which provides information of the phase lag of the probe. The identification of designed nanoparticles based upon electrochemical properties was evaluated using the Kelvin Probe Force Microscopy (KPFM) mode of AFM. The contact potential difference between the tip and the sample is measured using an AC bias that is offset with a compensating DC bias while operating in either tapping-mode or non-contact mode AFM. The contact potential difference is more commonly referred to as the difference in work function between the tip and the sample. The work function of a material can be calculated using a reference material with a known work function. Cobalt nanoparticles and gold nanoparticles were imaged using KPFM and baseline experimental contact potential difference values were obtained. Thus far, co-deposition of a mixed nanoparticle solution led to inconclusive results as the experimental and theoretical contact potential difference values were calculated. However, future studies relating to this experiment are planned

    Spatially resolved surface dissipation over metal and dielectric substrates

    Full text link
    We report spatially resolved measurements of static and fluctuating electric fields over conductive (Au) and non-conductive (SiO2) surfaces. Using an ultrasensitive `nanoladder' cantilever probe to scan over these surfaces at distances of a few tens of nanometers, we record changes in the probe resonance frequency and damping that we associate with static and fluctuating fields, respectively. We find that the two quantities are spatially correlated and of similar magnitude for the two materials. We quantitatively describe the observed effects on the basis of trapped surface charges and dielectric fluctuations in an adsorbate layer. Our results provide direct, spatial evidence for surface dissipation in adsorbates that affects nanomechanical sensors, trapped ions, superconducting resonators, and color centers in diamond

    The Theory of Scanning Quantum Dot Microscopy

    Full text link
    Electrostatic forces are among the most common interactions in nature and omnipresent at the nanoscale. Scanning probe methods represent a formidable approach to study these interactions locally. The lateral resolution of such images is, however, often limited as they are based on measuring the force (gradient) due to the entire tip interacting with the entire surface. Recently, we developed scanning quantum dot microscopy (SQDM), a new technique for the imaging and quantification of surface potentials which is based on the gating of a nanometer-size tip-attached quantum dot by the local surface potential and the detection of charge state changes via non-contact atomic force microscopy. Here, we present a rigorous formalism in the framework of which SQDM can be understood and interpreted quantitatively. In particular, we present a general theory of SQDM based on the classical boundary value problem of electrostatics, which is applicable to the full range of sample properties (conductive vs insulating, nanostructured vs homogeneously covered). We elaborate the general theory into a formalism suited for the quantitative analysis of images of nanostructured but predominantly flat and conductive samples

    Characterization of a home-built low temperature scanning probe microscopy system

    Get PDF
    The continuing advancement of technology is the driving force behind science and fundamental research. Scanning probe instruments still have a major impact in nanoscience and technology, because they provide a link between the macroscopic world and the atomic scale. The key to a reliable performance of experiments at the nanometer scale is the instrumentation, that allows probe positioning ranging from micrometers to Ångstroms with sub atomic precisions. A new type of scanning probe microscopy (SPM) system operating in ultra high vacuum (UHV) and at liquid Helium (LHe) temperature was developed. This offers the advantages that even reactive surfaces remain clean over time periods of several days, permitting long time experiments. Moreover, these experiments this low temperature scanning probe microscopy (LTSPM) system is the implementation of a focussing Fabry Perot interferometer (fFPi) that allows the following features: - Small amplitude operations and stiff cantilevers require sensors with high deflection sensitivity. With the fFPi in this low temperature SPM system, a deflection sensitivity of 4fm/ sqrt(Hz) at 1MHz can be obtained. - Wide detection bandwidth (DC-10MHz) enables the operation of higher flexural oscillation modes as well as the torsional modes of the cantilever. - A laser spot size of 3µm allows the use of ultra small cantilevers with the dimensions 1/10 of conventional cantilevers. - Photothermal excitation of cantilevers avoids undesirable mechanical vibrations near the cantilever resonance frequency. - Simultaneous flexural and torsional force detection provides quantitative studies of frictions and thus, atom manipulations by atomic force microscopy (AFM). - The combination of both types of microscopes (simultaneous AFM/STM) reveals more information than a scanning tunneling microscopy (STM) or AFM alone. A series of measurements on Si(111)7x7, herringbone superstructure of Au(111) and highly oriented pyrolytic graphite (HOPG) provides information regarding imaging performance of the system. Among these performance tests are atomically resolved scans at three different operating temperatures in STM mode. In non-contact atomic force microscopy (nc-AFM) mode, imaging was performed with the cantilever driven at the fundamental and 2nd oscillation mode. Additional measurements were performed with the fFPi in order to quantify the impact of the laser cooling effects (radiation pressure and photothermal effects) on the oscillating cantilever at three different operating temperatures. The aim of this work is the development, implementation and characterization of a new low temperature scanning probe microscope with an ultra sensitive and high bandwidth fFPi deflection sensor, suitable for nc-AFM operations with small, simultaneous flexural and torsional cantilever oscillation modes. Furthermore, expected upgrades will allow simultaneous nc-AFM/STM operations. Keywords: low temperature home-built simultaneous STM/ nc-AFM, tip-sample gap stability, PLL and self-excitation, highly oriented pyrolytic graphite (HOPG), reconstructed Si(111)7x7, herringbone superstructure, focussing Fabry-Perot interferometer, cantilever cooling, radiation pressure and photothermal effects. Der kontinuierliche, technologische Fortschritt ist die treibende Kraft hinter Wissenschaft und Grundlagenforschung. Rasterkraft und -tunnel Instrumente haben immer noch einen bedeutenden Einfluss auf die Nanotechnologie und -wissenschaft, weil sie eine Verbindung zwischen der makroskopischen Welt und den atomaren Massstäben darstellen. Der Schlüssel für eine zuverlässige Ausführung von Experimenten mit Nanometer Massstäben ist die Instrumentierung, die eine Spitzenpositionierung von Mikrometer bis Ångstroms mit subatomarer Präzision erlaubt. Ein neuartiges Rasterspitzen Mikroskop (SPM) System wurde entwickelt, das im Ultra Hoch Vakuum (UHV) und bei flüssig Helium Temperaturen arbeitet. Dies bietet Vorteile weil sogar reaktive Oberflächen über eine Dauer von einigen Tagen sauber bleiben, was eine längere Experimentierphase zulässt. Zusätzlich zeigen diese Experimente bei tiefen Temperaturen weitere Vorteile wie kleine Driftwerte und tiefe Piezo Kriechraten. Der Ansatz bei diesem Tieftemperatur Rasterspitzen Mikroskop System ist die Implementierung eines fokussierenden Fabry Perot Interferometers das die folgenden Eigenschaften vorweist: - Der Betrieb bei kleinen Amplituden und mit steifen Cantilever setzt Sensoren mit einer hohen Ablenkempfindlichkeit voraus. Mit diesem fokussierenden Fabry Perot Interferometer (fFPi) kann eine Ablenkempfindlichkeit von 4fm/ sqrt(Hz) bei 1MHz erreicht werden. - Detektion mit einer grossen Bandbreite (DC-10MHz) erlauben einen Betrieb von Cantilever mit flexuralen und torsionalen Oszillation Modi. - Ein Laser mit einem Brennpunkt von 3µm lässt einen Betrieb mit einem ultra kleinen Cantilever zu, der 1/10 so gross ist wie ein konventioneller Cantilever. - Photothermische Anregung eines Cantilevers vermeidet unerwünschte mechanische Vibrationen rund um die Resonanzfrequenz. - Gleichzeitige flexural und torsional Kraftdetektion erlauben quantitative Untersuchungen von Reibungen und daher atomare Manipulationen mit Rasterkraft Mikroskopie (AFM). - Die Kombination und simultanen Betrieb von beiden Rasterspitzen Mikroskopen (AFM/STM) zeigen mehr Information als ein Raster Tunnel Mikroskop (STM) alleine. Eine Serie von Messungen mit Si(111)7x7, Herringbone Superstrukturen auf Au(111) und Highly Oriented Pyrolytic Graphite (HOPG) geben Information bezüglich der Leistungen des Systems preis. Einige dieser Leistungstests sind atomar aufgelöste Abbildungen bei drei unterschiedlichen Betriebstemperaturen im STM Betriebsart. Im nicht-Kontakt AFM (nc-AFM) Betriebsart, Abbildungen sind ausgeführt worden auf der Grundschwingung und der zweiten Oberschwingung. Zusätzliche Messungen wurden mit dem fFPi ausgeführt um den Einfluss der Laserkühlung auf den oszillierenden Cantilever bei drei unterschiedlichen Betriebstemperaturen zu quantifizieren. Das Ziel dieser Arbeit ist die Entwicklung, Implementation und Charakterisierung eines neuen Tieftemperatur Rasterspitzen Mikroskops mit einem ultra-empfindlichen und Breitband fokussierenden Fabry Perot Interferometer Ablenk Sensor, geeignet für den nicht-Kontakt AFM Betrieb mit kleinen, simultanen flexural und torsional Cantilever Schwingungsmodi. Naheliegende Erweiterungen des Systems gewährleisten einen simultan nc-AFM/STM Betrieb. Schlüsselwörter: Tieftemperatur simultan nc-AFM/STM aus Eigenbau, Spitzen-Probe Spalt Stabilität, PLL und Eigenanregungsbetrieb, Highly Oriented Pyrolytic Graphite (HOPG), reconstrukturiertes Si(111)7x7, Herringbone Superstruktur, fokussierenden Fabry Perot Interferometer, Cantilever Kühlung, Strahlendruck und photothermische Effekte
    corecore