23 research outputs found

    Software for cut-generating functions in the Gomory--Johnson model and beyond

    Full text link
    We present software for investigations with cut generating functions in the Gomory-Johnson model and extensions, implemented in the computer algebra system SageMath.Comment: 8 pages, 3 figures; to appear in Proc. International Congress on Mathematical Software 201

    New computer-based search strategies for extreme functions of the Gomory--Johnson infinite group problem

    Full text link
    We describe new computer-based search strategies for extreme functions for the Gomory--Johnson infinite group problem. They lead to the discovery of new extreme functions, whose existence settles several open questions.Comment: 54 pages, many figure

    Light on the Infinite Group Relaxation

    Full text link
    This is a survey on the infinite group problem, an infinite-dimensional relaxation of integer linear optimization problems introduced by Ralph Gomory and Ellis Johnson in their groundbreaking papers titled "Some continuous functions related to corner polyhedra I, II" [Math. Programming 3 (1972), 23-85, 359-389]. The survey presents the infinite group problem in the modern context of cut generating functions. It focuses on the recent developments, such as algorithms for testing extremality and breakthroughs for the k-row problem for general k >= 1 that extend previous work on the single-row and two-row problems. The survey also includes some previously unpublished results; among other things, it unveils piecewise linear extreme functions with more than four different slopes. An interactive companion program, implemented in the open-source computer algebra package Sage, provides an updated compendium of known extreme functions.Comment: 45 page

    Equivariant Perturbation in Gomory and Johnson's Infinite Group Problem. VII. Inverse semigroup theory, closures, decomposition of perturbations

    Full text link
    In this self-contained paper, we present a theory of the piecewise linear minimal valid functions for the 1-row Gomory-Johnson infinite group problem. The non-extreme minimal valid functions are those that admit effective perturbations. We give a precise description of the space of these perturbations as a direct sum of certain finite- and infinite-dimensional subspaces. The infinite-dimensional subspaces have partial symmetries; to describe them, we develop a theory of inverse semigroups of partial bijections, interacting with the functional equations satisfied by the perturbations. Our paper provides the foundation for grid-free algorithms for the Gomory-Johnson model, in particular for testing extremality of piecewise linear functions whose breakpoints are rational numbers with huge denominators.Comment: 67 pages, 21 figures; v2: changes to sections 10.2-10.3, improved figures; v3: additional figures and minor updates, add reference to IPCO abstract. CC-BY-S

    The structure of the infinite models in integer programming

    Get PDF
    The infinite models in integer programming can be described as the convex hull of some points or as the intersection of halfspaces derived from valid functions. In this paper we study the relationships between these two descriptions. Our results have implications for corner polyhedra. One consequence is that nonnegative, continuous valid functions suffice to describe corner polyhedra (with or without rational data)
    corecore