9,271 research outputs found

    Analysis of approximate nearest neighbor searching with clustered point sets

    Full text link
    We present an empirical analysis of data structures for approximate nearest neighbor searching. We compare the well-known optimized kd-tree splitting method against two alternative splitting methods. The first, called the sliding-midpoint method, which attempts to balance the goals of producing subdivision cells of bounded aspect ratio, while not producing any empty cells. The second, called the minimum-ambiguity method is a query-based approach. In addition to the data points, it is also given a training set of query points for preprocessing. It employs a simple greedy algorithm to select the splitting plane that minimizes the average amount of ambiguity in the choice of the nearest neighbor for the training points. We provide an empirical analysis comparing these two methods against the optimized kd-tree construction for a number of synthetically generated data and query sets. We demonstrate that for clustered data and query sets, these algorithms can provide significant improvements over the standard kd-tree construction for approximate nearest neighbor searching.Comment: 20 pages, 8 figures. Presented at ALENEX '99, Baltimore, MD, Jan 15-16, 199

    Reverse k Nearest Neighbor Search over Trajectories

    Full text link
    GPS enables mobile devices to continuously provide new opportunities to improve our daily lives. For example, the data collected in applications created by Uber or Public Transport Authorities can be used to plan transportation routes, estimate capacities, and proactively identify low coverage areas. In this paper, we study a new kind of query-Reverse k Nearest Neighbor Search over Trajectories (RkNNT), which can be used for route planning and capacity estimation. Given a set of existing routes DR, a set of passenger transitions DT, and a query route Q, a RkNNT query returns all transitions that take Q as one of its k nearest travel routes. To solve the problem, we first develop an index to handle dynamic trajectory updates, so that the most up-to-date transition data are available for answering a RkNNT query. Then we introduce a filter refinement framework for processing RkNNT queries using the proposed indexes. Next, we show how to use RkNNT to solve the optimal route planning problem MaxRkNNT (MinRkNNT), which is to search for the optimal route from a start location to an end location that could attract the maximum (or minimum) number of passengers based on a pre-defined travel distance threshold. Experiments on real datasets demonstrate the efficiency and scalability of our approaches. To the best of our best knowledge, this is the first work to study the RkNNT problem for route planning.Comment: 12 page
    • …
    corecore