625 research outputs found

    Assessment of attribute-based credentials for privacy-preserving road traffic services in smart cities

    Get PDF
    Smart cities involve the provision of advanced services for road traffic users. Vehicular ad hoc networks (VANETs) are a promising communication technology in this regard. Preservation of privacy is crucial in these services to foster their acceptance. Previous approaches have mainly focused on PKI-based or ID-based cryptography. However, these works have not fully addressed the minimum information disclosure principle. Thus, questions such as how to prove that a driver is a neighbour of a given zone, without actually disclosing his identity or real address, remain unaddressed. A set of techniques, referred to as Attribute-Based Credentials (ABCs), have been proposed to address this need in traditional computation scenarios. In this paper, we explore the use of ABCs in the vehicular context. For this purpose, we focus on a set of use cases from European Telecommunications Standards Institute (ETSI) Basic Set of Applications, specially appropriate for the early development of smart cities. We assess which ABC techniques are suitable for this scenario, focusing on three representative ones—Idemix, U-Prove and VANET-updated Persiano systems. Our experimental results show that they are feasible in VANETs considering state-of-the-art technologies, and that Idemix is the most promising technique for most of the considered use cases.This work was supported by the MINECO grant TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You); the CAM grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks) and by the MINECO grant TIN2016-79095-C2-2-R (SMOG-DEV - Security mechanisms for fog computing: advanced security for devices). Jose Maria de Fuentes and Lorena Gonzalez were also supported by the Programa de Ayudas para la Movilidad of Carlos III University of Madrid

    Privacy-preserving, User-centric VoIP CAPTCHA Challenges: an Integrated Solution in the SIP Environment

    Get PDF
    Purpose – This work aims to argue that it is possible to address discrimination issues that naturally arise in contemporary audio CAPTCHA challenges and potentially enhance the effectiveness of audio CAPTCHA systems by adapting the challenges to the user characteristics. Design/methodology/approach – A prototype has been designed, called PrivCAPTCHA, to offer privacy-preserving, user-centric CAPTCHA challenges. Anonymous credential proofs are integrated into the Session Initiation Protocol (SIP) protocol and the approach is evaluated in a real-world Voice over Internet Protocol (VoIP) environment. Findings – The results of this work indicate that it is possible to create VoIP CAPTCHA services offering privacy-preserving, user-centric challenges while maintaining sufficient efficiency. Research limitations/implications – The proposed approach was evaluated through an experimental implementation to demonstrate its feasibility. Additional features, such as appropriate user interfaces and efficiency optimisations, would be useful for a commercial product. Security measures to protect the system from attacks against the SIP protocol would be useful to counteract the effects of the introduced overhead. Future research could investigate the use of this approach on non-audio CAPTCHA services. Practical implications – PrivCAPTCHA is expected to achieve fairer, non-discriminating CAPTCHA services while protecting the user’s privacy. Adoption success relies upon the general need for employment of privacy-preserving practices in electronic interactions. Social implications – This approach is expected to enhance the quality of life of users, who will now receive CAPTCHA challenges closer to their characteristics. This applies especially to users with disabilities. Additionally, as a privacy-preserving service, this approach is expected to increase trust during the use of services that use it. Originality/value – To the best of authors’ knowledge, this is the first comprehensive proposal for privacy-preserving CAPTCHA challenge adaptation. The proposed system aims at providing an improved CAPTCHA service that is more appropriate for and trusted by human users

    Privacy-preserving and accountable on-the-road prosecution of invalid vehicular mandatory authorizations

    Get PDF
    Nowadays, improving road safety is one of the major challenges in developed countries and, to this regard, attaining more effectiveness in the enforcement of road safety policies has become a key target. In particular, enforcing the requirements related to the technical and administrative mandatory documentation of on-the-road motor vehicles is one of the critical issues. The use of modern technologies in the context of Intelligent Transportation Systems (ITS) could enable the design of a more convenient, frequent and effective enforcement system compared to the traditional human patrol controls. In this article we propose a novel system for the on-the-fly verification of mandatory technical and administrative documentation of motor vehicles. Vehicles not complying with the required regulations will be identified and sanctioned whereas those vehicles, observant of the mandatory regulations, will maintain anonymity and non-traceability of their whereabouts. The proposed system is based on the use of anonymous credentials which will be loaded onto the vehicle to automatically and on-the-fly prove holdership of required credentials without requiring the vehicle to stop beside the road. We also implement a prototype of the credential system and analyze the feasibility of our solution in terms of computational cost and time to perform such telematic controls.This work has been funded by grant CCG10-UC3M/TIC-5174 (project PRECIOUS) and partially by grant TIN2009-13461 (project E-SAVE).En prens

    Anonymous Announcement System (AAS) for electric vehicle in VANETs

    Get PDF
    Vehicular Ad Hoc Network (VANET) allows vehicles to exchange information about road and traffic conditions through wireless communications. Nevertheless, providing reliable and authenticated information without violating the user\u27s privacy seems contradictory. In this paper, we propose an Anonymous Announcement System especially designed for Electric Vehicle (EV) in VANETs to achieve the aforementioned contradictory goals. We demonstrated the feasibility of the protocol with a prototype implementation on a suitable device and a network simulation with our protocol added on top of a normal VANET

    Pseudonym systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 50-52).by Anna Lysyanskaya.S.M

    Anonymous, authentic, and accountable resource management based on the E-cash paradigm

    Get PDF
    The prevalence of digital information management in an open network has driven the need to maintain balance between anonymity, authenticity and accountability (AAA). Anonymity allows a principal to hide its identity from strangers before trust relationship is established. Authenticity ensures the correct identity is engaged in the transaction even though it is hidden. Accountability uncovers the hidden identity when misbehavior of the principal is detected. The objective of this research is to develop an AAA management framework for secure resource allocations. Most existing resource management schemes are designed to manage one or two of the AAA attributes. How to provide high strength protection to all attributes is an extremely challenging undertaking. Our study shows that the electronic cash (E-cash) paradigm provides some important knowledge bases for this purpose. Based on Chaum-Pederson’s general transferable E-cash model, we propose a timed-zero-knowledge proof (TZKP) protocol, which greatly reduces storage spaces and communication overheads for resource transfers, without compromising anonymity and accountability. Based on Eng-Okamoto’s general divisible E-cash model, we propose a hypercube-based divisibility framework, which provides a sophisticated and flexible way to partition a chunk of resources, with different trade-offs in anonymity protection and computational costs, when it is integrated with different sub-cube allocation schemes. Based on the E-cash based resource management framework, we propose a privacy preserving service oriented architecture (SOA), which allows the service providers and consumers to exchange services without leaking their sensitive data. Simulation results show that the secure resource management framework is highly practical for missioncritical applications in large scale distributed information systems

    Structure-Preserving Smooth Projective Hashing

    Get PDF
    International audienceSmooth projective hashing has proven to be an extremely useful primitive, in particular when used in conjunction with commitments to provide implicit decommitment. This has lead to applications proven secure in the UC framework, even in presence of an adversary which can do adaptive corruptions, like for example Password Authenticated Key Exchange (PAKE), and 1-out-of-m Oblivious Transfer (OT). However such solutions still lack in efficiency, since they heavily scale on the underlying message length. Structure-preserving cryptography aims at providing elegant and efficient schemes based on classical assumptions and standard group operations on group elements. Recent trend focuses on constructions of structure- preserving signatures, which require message, signature and verification keys to lie in the base group, while the verification equations only consist of pairing-product equations. Classical constructions of Smooth Projective Hash Function suffer from the same limitation as classical signatures: at least one part of the computation (messages for signature, witnesses for SPHF) is a scalar. In this work, we introduce and instantiate the concept of Structure- Preserving Smooth Projective Hash Function, and give as applications more efficient instantiations for one-round PAKE and three-round OT, and information retrieval thanks to Anonymous Credentials, all UC- secure against adaptive adversaries
    • …
    corecore