44 research outputs found

    HE3^3DB: An Efficient and Elastic Encrypted Database Via Arithmetic-And-Logic Fully Homomorphic Encryption

    Get PDF
    As concerns are increasingly raised about data privacy, encrypted database management system (DBMS) based on fully homomorphic encryption (FHE) attracts increasing research attention, as FHE permits DBMS to be directly outsourced to cloud servers without revealing any plaintext data. However, the real-world deployment of FHE-based DBMS faces two main challenges: i) high computational latency, and ii) lack of elastic query processing capability, both of which stem from the inherent limitations of the underlying FHE operators. Here, we introduce HE3^3DB, a fully homomorphically encrypted, efficient and elastic DBMS framework based on a new FHE infrastructure. By proposing and integrating new arithmetic and logic homomorphic operators, we devise fast and high-precision homomorphic comparison and aggregation algorithms that enable a variety of SQL queries to be applied over FHE ciphertexts, e.g., compound filter-aggregation, sorting, grouping, and joining. In addition, in contrast to existing encrypted DBMS that only support aggregated information retrieval, our framework permits further server-side analytical processing over the queried FHE ciphertexts, such as private decision tree evaluation. In the experiment, we rigorously study the efficiency and flexibility of HE3^3DB. We show that, compared to the state-of-the-art techniques,HE3^3DB can homomorphically evaluate end-to-end SQL queries as much as 41Ă—41\times -299Ă—299\times faster than the state-of-the-art solution, completing a TPC-H query over a 16-bit 10K-row database within 241 seconds

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 16th International Annual Conference on Cyber Security, CNCERT 2020, held in Beijing, China, in August 2020. The 17 papers presented were carefully reviewed and selected from 58 submissions. The papers are organized according to the following topical sections: access control; cryptography; denial-of-service attacks; hardware security implementation; intrusion/anomaly detection and malware mitigation; social network security and privacy; systems security

    Privacy Enhancing Technologies for solving the privacy-personalization paradox : taxonomy and survey

    Get PDF
    Personal data are often collected and processed in a decentralized fashion, within different contexts. For instance, with the emergence of distributed applications, several providers are usually correlating their records, and providing personalized services to their clients. Collected data include geographical and indoor positions of users, their movement patterns as well as sensor-acquired data that may reveal users’ physical conditions, habits and interests. Consequently, this may lead to undesired consequences such as unsolicited advertisement and even to discrimination and stalking. To mitigate privacy threats, several techniques emerged, referred to as Privacy Enhancing Technologies, PETs for short. On one hand, the increasing pressure on service providers to protect users’ privacy resulted in PETs being adopted. One the other hand, service providers have built their business model on personalized services, e.g. targeted ads and news. The objective of the paper is then to identify which of the PETs have the potential to satisfy both usually divergent - economical and ethical - purposes. This paper identifies a taxonomy classifying eight categories of PETs into three groups, and for better clarity, it considers three categories of personalized services. After defining and presenting the main features of PETs with illustrative examples, the paper points out which PETs best fit each personalized service category. Then, it discusses some of the inter-disciplinary privacy challenges that may slow down the adoption of these techniques, namely: technical, social, legal and economic concerns. Finally, it provides recommendations and highlights several research directions

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 16th International Annual Conference on Cyber Security, CNCERT 2020, held in Beijing, China, in August 2020. The 17 papers presented were carefully reviewed and selected from 58 submissions. The papers are organized according to the following topical sections: access control; cryptography; denial-of-service attacks; hardware security implementation; intrusion/anomaly detection and malware mitigation; social network security and privacy; systems security

    Secure Computation in Online Social Networks

    Get PDF
    Apart from their numerous other benefits, online social networks (OSNs) allow users to jointly compute on each other’s data (e.g., profiles, geo-locations, medical records, etc.). Privacy issues naturally arise in this setting due to the sensitive nature of the exchanged information. Ideally, nothing about a user’s data should be revealed to the OSN provider or non-friend users, and even her friends should only learn the output of a joint computation. In this work we propose the first security framework to capture these strong privacy guarantees for general-purpose computation. We also achieve two additional attractive properties: users do not need to be online while their friends compute on their data, and any user value uploaded at the server can be repeatedly used in multiple computations. We formalize our framework in the setting of secure multi-party computation (MPC) and provide two instantiations: the first is a non-trivial adaptation of garbled circuits that converts inputs under different keys to ones under the same key, and the second is based on two-party mixed protocols and involves a novel two-party re-encryption module. We experimentally validate the efficiency of our instantiations using state-of-the-art tools for two concrete use-cases

    Homomorphic Encryption and Cryptanalysis of Lattice Cryptography

    Get PDF
    The vast amount of personal data being collected and analyzed through internet connected devices is vulnerable to theft and misuse. Modern cryptography presents several powerful techniques that can help to solve the puzzle of how to harness data for use while at the same time protecting it---one such technique is homomorphic encryption that allows computations to be done on data while it is still encrypted. The question of security for homomorphic encryption relates to the broader field of lattice cryptography. Lattice cryptography is one of the main areas of cryptography that promises to be secure even against quantum computing. In this dissertation, we will touch on several aspects of homomorphic encryption and its security based on lattice cryptography. Our main contributions are: 1. proving some heuristics that are used in major results in the literature for controlling the error size in bootstrapping for fully homomorphic encryption, 2. presenting a new fully homomorphic encryption scheme that supports k-bit arbitrary operations and achieves an asymptotic ciphertext expansion of one, 3. thoroughly studying certain attacks against the Ring Learning with Errors problem, 4. precisely characterizing the performance of an algorithm for solving the Approximate Common Divisor problem

    Secure and Efficient Models for Retrieving Data from Encrypted Databases in Cloud

    Get PDF
    Recently, database users have begun to use cloud database services to outsource their databases. The reason for this is the high computation speed and the huge storage capacity that cloud owners provide at low prices. However, despite the attractiveness of the cloud computing environment to database users, privacy issues remain a cause for concern for database owners since data access is out of their control. Encryption is the only way of assuaging users’ fears surrounding data privacy, but executing Structured Query Language (SQL) queries over encrypted data is a challenging task, especially if the data are encrypted by a randomized encryption algorithm. Many researchers have addressed the privacy issues by encrypting the data using deterministic, onion layer, or homomorphic encryption. Nevertheless, even with these systems, the encrypted data can still be subjected to attack. In this research, we first propose an indexing scheme to encode the original table’s tuples into bit vectors (BVs) prior to the encryption. The resulting index is then used to narrow the range of retrieved encrypted records from the cloud to a small set of records that are candidates for the user’s query. Based on the indexing scheme, we then design three different models to execute SQL queries over the encrypted data. The data are encrypted by a single randomized encryption algorithm, namely the Advanced Encryption Standard AES-CBC. In each proposed scheme, we use a different (secure) method for storing and maintaining the index values (BVs) (i.e., either at user’s side or at the cloud server), and we extend each system to support most of relational algebra operators, such as select, join, etc. Implementation and evaluation of the proposed systems reveals that they are practical and efficient at reducing both the computation and space overhead when compared with state-of-the-art systems like CryptDB

    Privacy-aware Security Applications in the Era of Internet of Things

    Get PDF
    In this dissertation, we introduce several novel privacy-aware security applications. We split these contributions into three main categories: First, to strengthen the current authentication mechanisms, we designed two novel privacy-aware alternative complementary authentication mechanisms, Continuous Authentication (CA) and Multi-factor Authentication (MFA). Our first system is Wearable-assisted Continuous Authentication (WACA), where we used the sensor data collected from a wrist-worn device to authenticate users continuously. Then, we improved WACA by integrating a noise-tolerant template matching technique called NTT-Sec to make it privacy-aware as the collected data can be sensitive. We also designed a novel, lightweight, Privacy-aware Continuous Authentication (PACA) protocol. PACA is easily applicable to other biometric authentication mechanisms when feature vectors are represented as fixed-length real-valued vectors. In addition to CA, we also introduced a privacy-aware multi-factor authentication method, called PINTA. In PINTA, we used fuzzy hashing and homomorphic encryption mechanisms to protect the users\u27 sensitive profiles while providing privacy-preserving authentication. For the second privacy-aware contribution, we designed a multi-stage privacy attack to smart home users using the wireless network traffic generated during the communication of the devices. The attack works even on the encrypted data as it is only using the metadata of the network traffic. Moreover, we also designed a novel solution based on the generation of spoofed traffic. Finally, we introduced two privacy-aware secure data exchange mechanisms, which allow sharing the data between multiple parties (e.g., companies, hospitals) while preserving the privacy of the individual in the dataset. These mechanisms were realized with the combination of Secure Multiparty Computation (SMC) and Differential Privacy (DP) techniques. In addition, we designed a policy language, called Curie Policy Language (CPL), to handle the conflicting relationships among parties. The novel methods, attacks, and countermeasures in this dissertation were verified with theoretical analysis and extensive experiments with real devices and users. We believe that the research in this dissertation has far-reaching implications on privacy-aware alternative complementary authentication methods, smart home user privacy research, as well as the privacy-aware and secure data exchange methods
    corecore