4,662 research outputs found

    An Efficient Anonymous Authentication Scheme for Internet of Vehicles

    Full text link
    Internet of Vehicles (IoV) is an intelligent application of IoT in smart transportation, which can make intelligent decisions for passengers. It has drawn extensive attention to improve traffic safety and efficiency and create a more comfortable driving and riding environment. Vehicular cloud computing is a variant of mobile cloud computing, which can process local information quickly. The cooperation of the Internet and vehicular cloud can make the communication more efficient in IoV. In this paper, we mainly focus on the secure communication between vehicles and roadside units. We first propose a new certificateless short signature scheme (CLSS) and prove the unforgeability of it in random oracle model. Then, by combining CLSS and a regional management strategy we design an efficient anonymous mutual quick authentication scheme for IoV. Additionally, the quantitative performance analysis shows that the proposed scheme achieves higher efficiency in terms of interaction between vehicles and roadside units compared with other existing schemes

    A Low Overhead Cooperative-based Authentication Protocol for VANETs

    Full text link
    Vehicular ad-hoc networks (VANETs) have been proposed to automate transportation industry in order to increase its accuracy, efficiency, throughput, and specially safety. Security plays an Undeniable important role on implementing VANETs in real life. Authentication is one of the basic elements of VANETs security. Proposed authentications protocols suffer from high overhead and cost. This paper presents a computation division based authentication which divide signature approvals between neighbor vehicles consequently decrease vehicles computation load. Simulation shows presented protocol propose an almost constant latency and closely zero message loss ratio related to traffic load, and improved efficiency compared with GSIS protocol.Comment: 6 page

    Energy and Information Management of Electric Vehicular Network: A Survey

    Full text link
    The connected vehicle paradigm empowers vehicles with the capability to communicate with neighboring vehicles and infrastructure, shifting the role of vehicles from a transportation tool to an intelligent service platform. Meanwhile, the transportation electrification pushes forward the electric vehicle (EV) commercialization to reduce the greenhouse gas emission by petroleum combustion. The unstoppable trends of connected vehicle and EVs transform the traditional vehicular system to an electric vehicular network (EVN), a clean, mobile, and safe system. However, due to the mobility and heterogeneity of the EVN, improper management of the network could result in charging overload and data congestion. Thus, energy and information management of the EVN should be carefully studied. In this paper, we provide a comprehensive survey on the deployment and management of EVN considering all three aspects of energy flow, data communication, and computation. We first introduce the management framework of EVN. Then, research works on the EV aggregator (AG) deployment are reviewed to provide energy and information infrastructure for the EVN. Based on the deployed AGs, we present the research work review on EV scheduling that includes both charging and vehicle-to-grid (V2G) scheduling. Moreover, related works on information communication and computing are surveyed under each scenario. Finally, we discuss open research issues in the EVN

    Vehicle Authentication via Monolithically Certified Public Key and Attributes

    Full text link
    Vehicular networks are used to coordinate actions among vehicles in traffic by the use of wireless transceivers (pairs of transmitters and receivers). Unfortunately, the wireless communication among vehicles is vulnerable to security threats that may lead to very serious safety hazards. In this work, we propose a viable solution for coping with Man-in-the-Middle attacks. Conventionally, Public Key Infrastructure (PKI) is utilized for a secure communication with the pre-certified public key. However, a secure vehicle-to-vehicle communication requires additional means of verification in order to avoid impersonation attacks. To the best of our knowledge, this is the first work that proposes to certify both the public key and out-of-band sense-able static attributes to enable mutual authentication of the communicating vehicles. Vehicle owners are bound to preprocess (periodically) a certificate for both a public key and a list of fixed unchangeable attributes of the vehicle. Furthermore, the proposed approach is shown to be adaptable with regards to the existing authentication protocols. We illustrate the security verification of the proposed protocol using a detailed proof in Spi calculus.Comment: Accepted in Wireless Networks June 2015, 4 figure

    Detecting Sybil Attacks in Vehicular Ad Hoc Networks

    Full text link
    Ad hoc networks is vulnerable to numerous number of attacks due to its infrastructure-less nature, one of these attacks is the Sybil attack. Sybil attack is a severe attack on vehicular ad hoc networks (VANET) in which the intruder maliciously claims or steals multiple identities and use these identities to disturb the functionality of the VANET network by disseminating false identities. Many solutions have been proposed in order to defense the VANET network against the Sybil attack. In this research a hybrid algorithm is proposed, by combining footprint and privacy-preserving detection of abuses of pseudonyms (P2DAP) methods. The hybrid detection algorithm is implemented using the ns2 simulator. The proposed algorithm is working as follows, P2DAP acting better than footprint when the number of vehicles increases. On the other hand, the footprint algorithm acting better when the speed of vehicles increases. The hybrid algorithm depends on encryption, authentication and on the trajectory of the vehicle. The scenarios will be generated using SUMO and MOVE tools

    Vehicle to vehicle (V2V) wireless communications

    Get PDF
    This work focuses on the vehicle-to-vehicle (V2V) communication, its current challenges, future perspective and possible improvement.V2V communication is characterized by the dynamic environment, high mobility, nonpredective scenario, propagation effects, and also communicating antenna's positions. This peculiarity of V2V wireless communication makes channel modelling and the vehicular propagation quite challenging. In this work, firstly we studied the present context of V2V communication also known as Vehicular Ad-hoc Netwok (VANET) including ongoing researches and studies particularly related to Dedicated Short Range Communication (DSRC), specifically designed for automotive uses with corresponding set of protocols and standards. Secondly, we focused on communication models and improvement of these models to make them more suitable, reliable and efficient for the V2V environment. As specifies the standard, OFDM is used in V2V communication, Adaptable OFDM transceiver was designed. Some parameters as performance analytics are used to compare the improvement with the actual situation. For the enhancement of physical layer of V2V communication, this work is focused in the study of MIMO channel instead of SISO. In the designed transceiver both SISO and MIMO were implemented and studied successfully

    Using Data Analytics to Detect Anomalous States in Vehicles

    Full text link
    Vehicles are becoming more and more connected, this opens up a larger attack surface which not only affects the passengers inside vehicles, but also people around them. These vulnerabilities exist because modern systems are built on the comparatively less secure and old CAN bus framework which lacks even basic authentication. Since a new protocol can only help future vehicles and not older vehicles, our approach tries to solve the issue as a data analytics problem and use machine learning techniques to secure cars. We develop a Hidden Markov Model to detect anomalous states from real data collected from vehicles. Using this model, while a vehicle is in operation, we are able to detect and issue alerts. Our model could be integrated as a plug-n-play device in all new and old cars

    Location Verification Systems in Emerging Wireless Networks

    Full text link
    As location-based techniques and applications become ubiquitous in emerging wireless networks, the verification of location information will become of growing importance. This has led in recent years to an explosion of activity related to location verification techniques in wireless networks, with a specific focus on Intelligent Transport Systems (ITS) being evident. Such focus is largely due to the mission-critical nature of vehicle location verification within the ITS scenario. In this work we review recent research in wireless location verification related to the vehicular network scenario. We particularly focus on location verification systems that rely on formal mathematical classification frameworks, showing how many systems are either partially or fully encompassed by such frameworks

    Pay as You Go: A Generic Crypto Tolling Architecture

    Full text link
    The imminent pervasive adoption of vehicular communication, based on dedicated short-range technology (ETSI ITS G5 or IEEE WAVE), 5G, or both, will foster a richer service ecosystem for vehicular applications. The appearance of new cryptography based solutions envisaging digital identity and currency exchange are set to stem new approaches for existing and future challenges. This paper presents a novel tolling architecture that harnesses the availability of 5G C-V2X connectivity for open road tolling using smartphones, IOTA as the digital currency and Hyperledger Indy for identity validation. An experimental feasibility analysis is used to validate the proposed architecture for secure, private and convenient electronic toll payment

    A Survey on Software-Defined VANETs: Benefits, Challenges, and Future Directions

    Full text link
    The evolving of Fifth Generation (5G) networks isbecoming more readily available as a major driver of the growthof new applications and business models. Vehicular Ad hocNetworks (VANETs) and Software Defined Networking (SDN)represent the key enablers of 5G technology with the developmentof next generation intelligent vehicular networks and applica-tions. In recent years, researchers have focused on the integrationof SDN and VANET, and look at different topics related to thearchitecture, the benefits of software-defined VANET servicesand the new functionalities to adapt them. However, securityand robustness of the complete architecture is still questionableand have been largely negleted. Moreover, the deployment andintegration of novel entities and several architectural componentsdrive new security threats and vulnerabilities.In this paper, first we survey the state-of-the-art SDN basedVehicular ad-hoc Network (SDVN) architectures for their net-working infrastructure design, functionalities, benefits, and chal-lenges. Then we discuss these SDVN architectures against majorsecurity threats that violate the key security services such asavailability, confidentiality, authentication, and data integrity.We also propose different countermeasures to these threats.Finally, we discuss the lessons learned with the directions offuture research work towards provisioning stringent security andprivacy solutions in future SDVN architectures. To the best of ourknowledge, this is the first comprehensive work that presents sucha survey and analysis on SDVNs in the era of future generationnetworks (e.g., 5G, and Information centric networking) andapplications (e.g., intelligent transportation system, and IoT-enabled advertising in VANETs).Comment: 17 pages, 2 figure
    corecore