1,937 research outputs found

    ADDRESSING GEOGRAPHICAL CHALLENGES IN THE BIG DATA ERA UTILIZING CLOUD COMPUTING

    Get PDF
    Processing, mining and analyzing big data adds significant value towards solving previously unverified research questions or improving our ability to understand problems in geographical sciences. This dissertation contributes to developing a solution that supports researchers who may not otherwise have access to traditional high-performance computing resources so they benefit from the “big data” era, and implement big geographical research in ways that have not been previously possible. Using approaches from the fields of geographic information science, remote sensing and computer science, this dissertation addresses three major challenges in big geographical research: 1) how to exploit cloud computing to implement a universal scalable solution to classify multi-sourced remotely sensed imagery datasets with high efficiency; 2) how to overcome the missing data issue in land use land cover studies with a high-performance framework on the cloud through the use of available auxiliary datasets; and 3) the design considerations underlying a universal massive scale voxel geographical simulation model to implement complex geographical systems simulation using a three dimensional spatial perspective. This dissertation implements an in-memory distributed remotely sensed imagery classification framework on the cloud using both unsupervised and supervised classifiers, and classifies remotely sensed imagery datasets of the Suez Canal area, Egypt and Inner Mongolia, China under different cloud environments. This dissertation also implements and tests a cloud-based gap filling model with eleven auxiliary datasets in biophysical and social-economics in Inner Mongolia, China. This research also extends a voxel-based Cellular Automata model using graph theory and develops this model as a massive scale voxel geographical simulation framework to simulate dynamic processes, such as air pollution particles dispersal on cloud

    Fusion approach for remotely sensed mapping of agriculture (FARMA):A scalable open source method for land cover monitoring using data fusion

    Get PDF
    The increasing availability of very-high resolution (VHR; &lt;2 m) imagery has the potential to enable agricultural monitoring at increased resolution and cadence, particularly when used in combination with widely available moderate-resolution imagery. However, scaling limitations exist at the regional level due to big data volumes and processing constraints. Here, we demonstrate the Fusion Approach for Remotely Sensed Mapping of Agriculture (FARMA), using a suite of open source software capable of efficiently characterizing time-series field-scale statistics across large geographical areas at VHR resolution. We provide distinct implementation examples in Vietnam and Senegal to demonstrate the approach using WorldView VHR optical, Sentinel-1 Synthetic Aperture Radar, and Sentinel-2 and Sentinel-3 optical imagery. This distributed software is open source and entirely scalable, enabling large area mapping even with modest computing power. FARMA provides the ability to extract and monitor sub-hectare fields with multisensor raster signals, which previously could only be achieved at scale with large computational resources. Implementing FARMA could enhance predictive yield models by delineating boundaries and tracking productivity of smallholder fields, enabling more precise food security observations in low and lower-middle income countries.</p

    Mobile Big Data Analytics in Healthcare

    Get PDF
    Mobile and ubiquitous devices are everywhere around us generating considerable amount of data. The concept of mobile computing and analytics is expanding due to the fact that we are using mobile devices day in and out without even realizing it. These mobile devices use Wi-Fi, Bluetooth or mobile data to be intermittently connected to the world, generating, sending and receiving data on the move. Latest mobile applications incorporating graphics, video and audio are main causes of loading the mobile devices by consuming battery, memory and processing power. Mobile Big data analytics includes for instance, big health data, big location data, big social media data, and big heterogeneous data. Healthcare is undoubtedly one of the most data-intensive industries nowadays and the challenge is not only in acquiring, storing, processing and accessing data, but also in engendering useful insights out of it. These insights generated from health data may reduce health monitoring cost, enrich disease diagnosis, therapy, and care and even lead to human lives saving. The challenge in mobile data and Big data analytics is how to meet the growing performance demands of these activities while minimizing mobile resource consumption. This thesis proposes a scalable architecture for mobile big data analytics implementing three new algorithms (i.e. Mobile resources optimization, Mobile analytics customization and Mobile offloading), for the effective usage of resources in performing mobile data analytics. Mobile resources optimization algorithm monitors the resources and switches off unused network connections and application services whenever resources are limited. However, analytics customization algorithm attempts to save energy by customizing the analytics process while implementing some data-aware techniques. Finally, mobile offloading algorithm decides on the fly whether to process data locally or delegate it to a Cloud back-end server. The ultimate goal of this research is to provide healthcare decision makers with the advancements in mobile Big data analytics and support them in handling large and heterogeneous health datasets effectively on the move

    Ubiquitous model for wireless sensor networks monitoring

    Get PDF
    Wireless Sensor Networks (WSNs) belongs to a new technology trend where tiny and resource constrained devices are wirelessly interconnected and are able to interact with the surrounding environment by collecting data, such as temperature and humidity. Recently, due to the huge growth of mobile devices usage with Internet connection, smartphones are becoming the center of future ubiquitous wireless networks allowing users to access data network services, anytime and anywhere. According to the Internet of Things vision, interconnecting WSNs with smartphones and the Internet is a big challenge. Then, due to the heterogeneity of these devices new architectures are required. This dissertation focuses on the design and construction of a ubiquitous architecture for WSNs monitoring based on Web services, a relational database, and an Android mobile application. This architecture allows mobile users accessing real-time or historical data in a ubiquitous environment using smartphones. Besides that, a push notification system to alert mobile users when a sensor parameter overcomes a given threshold was created. The entire solution was evaluated and demonstrated using a laboratory WSN testbed, and is ready for use.As redes de sensores sem fios fazem parte de uma nova tendência tecnológica na qual pequenos dispositivos com recursos limitados comunicam entre si, sem fios, e interagem com o ambiente envolvente recolhendo uma grande diversidade de dados, tais como a temperatura e a humidade. Recentemente, devido ao enorme crescimento no uso de dispositivos móveis com ligação à Internet, os smartphones estão a tornar-se o centro das futuras redes sem fios ubíquas permitindo aos utilizadores aceder a dados, a qualquer hora e em qualquer lugar. De acordo com a visão da Internet of Things, interligar redes de sensores sem fios e smartphones usando a Internet é um grande desafio e novas arquitecturas são necessárias devido à heterogeneidade destes dispositivos. Esta dissertação centra-se na proposta e construção de uma arquitectura ubíqua para a monitorização de redes de sensores sem fios, baseada em serviços Web, apoiada numa base de dados relacional e uma aplicação móvel para o sistema operative Android. Esta arquitectura permite que os utilizadores móveis acedam a dados em tempo real e também a dados históricos, num ambiente móvel, usando smartphones. Além disso, foi desenvolvido um sistema de notificações push que alerta o utilizador quando um dado parâmetro de um sensor ultrapassa um limiar pré-definido. A solução construída foi testada e demonstrada utilizando uma testbed laboratorial e está pronta para utilização

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Remote sensing big data computing: challenges and opportunities

    Get PDF
    As we have entered an era of high resolution earth observation, the RS data are undergoing an explosive growth. The proliferation of data also give rise to the increasing complexity of RS data, like the diversity and higher dimensionality characteristic of the data. RS data are regarded as RS ‘‘Big Data’’. Fortunately, we are witness the coming technological leapfrogging. In this paper, we give a brief overview on the Big Data and data-intensive problems, including the analysis of RS Big Data, Big Data challenges, current techniques and works for processing RS Big Data

    Towards intelligent geo-database support for earth system observation: Improving the preparation and analysis of big spatio-temporal raster data

    Get PDF
    The European COPERNICUS program provides an unprecedented breakthrough in the broad use and application of satellite remote sensing data. Maintained on a sustainable basis, the COPERNICUS system is operated on a free-and-open data policy. Its guaranteed availability in the long term attracts a broader community to remote sensing applications. In general, the increasing amount of satellite remote sensing data opens the door to the diverse and advanced analysis of this data for earth system science. However, the preparation of the data for dedicated processing is still inefficient as it requires time-consuming operator interaction based on advanced technical skills. Thus, the involved scientists have to spend significant parts of the available project budget rather on data preparation than on science. In addition, the analysis of the rich content of the remote sensing data requires new concepts for better extraction of promising structures and signals as an effective basis for further analysis. In this paper we propose approaches to improve the preparation of satellite remote sensing data by a geo-database. Thus the time needed and the errors possibly introduced by human interaction are minimized. In addition, it is recommended to improve data quality and the analysis of the data by incorporating Artificial Intelligence methods. A use case for data preparation and analysis is presented for earth surface deformation analysis in the Upper Rhine Valley, Germany, based on Persistent Scatterer Interferometric Synthetic Aperture Radar data. Finally, we give an outlook on our future research
    corecore