15,074 research outputs found

    Optic nerve head segmentation

    Get PDF
    Reliable and efficient optic disk localization and segmentation are important tasks in automated retinal screening. General-purpose edge detection algorithms often fail to segment the optic disk due to fuzzy boundaries, inconsistent image contrast or missing edge features. This paper presents an algorithm for the localization and segmentation of the optic nerve head boundary in low-resolution images (about 20 /spl mu//pixel). Optic disk localization is achieved using specialized template matching, and segmentation by a deformable contour model. The latter uses a global elliptical model and a local deformable model with variable edge-strength dependent stiffness. The algorithm is evaluated against a randomly selected database of 100 images from a diabetic screening programme. Ten images were classified as unusable; the others were of variable quality. The localization algorithm succeeded on all bar one usable image; the contour estimation algorithm was qualitatively assessed by an ophthalmologist as having Excellent-Fair performance in 83% of cases, and performs well even on blurred image

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)

    Tracking multiple objects using intensity-GVF snakes

    Get PDF
    Active contours or snakes are widely used for segmentation and tracking. Multiple object tracking remains a difficult task, characterised by a trade off between increasing the capturing range of edges of the object of interest, and decreasing the capturing range of other edges. We propose a new external force field which is calculated for every object independently. This new force field uses prior knowledge about the intensity of the object of interest. Using this extra information, this new force field helps in discriminating between edges of interest and other objects. For this new force field, the expected intensity of an object must be estimated. We propose a technique which calculates this estimation out of the image

    A computational efficient external energy for active contour segmentation using edge propagation

    Get PDF
    Active contours or snakes are widely used for segmentation and tracking. We propose a new active contour model, which converges reliably even when the initialization is far from the object of interest. The proposed segmentation technique uses an external energy function where the energy slowly decreases in the vicinity of an edge. This new energy function is calculated using an efficient dual scan line algorithm. The proposed energy function is tested on computational speed, its effect on the convergence speed of the active contour and the segmentation result. The proposed method gets similar segmentation results as the gradient vector flow active contours, but the energy function needs much less time to calculate

    Image Segmentation Using Weak Shape Priors

    Full text link
    The problem of image segmentation is known to become particularly challenging in the case of partial occlusion of the object(s) of interest, background clutter, and the presence of strong noise. To overcome this problem, the present paper introduces a novel approach segmentation through the use of "weak" shape priors. Specifically, in the proposed method, an segmenting active contour is constrained to converge to a configuration at which its geometric parameters attain their empirical probability densities closely matching the corresponding model densities that are learned based on training samples. It is shown through numerical experiments that the proposed shape modeling can be regarded as "weak" in the sense that it minimally influences the segmentation, which is allowed to be dominated by data-related forces. On the other hand, the priors provide sufficient constraints to regularize the convergence of segmentation, while requiring substantially smaller training sets to yield less biased results as compared to the case of PCA-based regularization methods. The main advantages of the proposed technique over some existing alternatives is demonstrated in a series of experiments.Comment: 27 pages, 8 figure
    corecore