1,083 research outputs found

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    DGCNet: An Efficient 3D-Densenet based on Dynamic Group Convolution for Hyperspectral Remote Sensing Image Classification

    Full text link
    Deep neural networks face many problems in the field of hyperspectral image classification, lack of effective utilization of spatial spectral information, gradient disappearance and overfitting as the model depth increases. In order to accelerate the deployment of the model on edge devices with strict latency requirements and limited computing power, we introduce a lightweight model based on the improved 3D-Densenet model and designs DGCNet. It improves the disadvantage of group convolution. Referring to the idea of dynamic network, dynamic group convolution(DGC) is designed on 3d convolution kernel. DGC introduces small feature selectors for each grouping to dynamically decide which part of the input channel to connect based on the activations of all input channels. Multiple groups can capture different and complementary visual and semantic features of input images, allowing convolution neural network(CNN) to learn rich features. 3D convolution extracts high-dimensional and redundant hyperspectral data, and there is also a lot of redundant information between convolution kernels. DGC module allows 3D-Densenet to select channel information with richer semantic features and discard inactive regions. The 3D-CNN passing through the DGC module can be regarded as a pruned network. DGC not only allows 3D-CNN to complete sufficient feature extraction, but also takes into account the requirements of speed and calculation amount. The inference speed and accuracy have been improved, with outstanding performance on the IN, Pavia and KSC datasets, ahead of the mainstream hyperspectral image classification methods
    • …
    corecore