19,597 research outputs found

    Discriminative Features via Generalized Eigenvectors

    Full text link
    Representing examples in a way that is compatible with the underlying classifier can greatly enhance the performance of a learning system. In this paper we investigate scalable techniques for inducing discriminative features by taking advantage of simple second order structure in the data. We focus on multiclass classification and show that features extracted from the generalized eigenvectors of the class conditional second moments lead to classifiers with excellent empirical performance. Moreover, these features have attractive theoretical properties, such as inducing representations that are invariant to linear transformations of the input. We evaluate classifiers built from these features on three different tasks, obtaining state of the art results

    Bayesian Approximate Kernel Regression with Variable Selection

    Full text link
    Nonlinear kernel regression models are often used in statistics and machine learning because they are more accurate than linear models. Variable selection for kernel regression models is a challenge partly because, unlike the linear regression setting, there is no clear concept of an effect size for regression coefficients. In this paper, we propose a novel framework that provides an effect size analog of each explanatory variable for Bayesian kernel regression models when the kernel is shift-invariant --- for example, the Gaussian kernel. We use function analytic properties of shift-invariant reproducing kernel Hilbert spaces (RKHS) to define a linear vector space that: (i) captures nonlinear structure, and (ii) can be projected onto the original explanatory variables. The projection onto the original explanatory variables serves as an analog of effect sizes. The specific function analytic property we use is that shift-invariant kernel functions can be approximated via random Fourier bases. Based on the random Fourier expansion we propose a computationally efficient class of Bayesian approximate kernel regression (BAKR) models for both nonlinear regression and binary classification for which one can compute an analog of effect sizes. We illustrate the utility of BAKR by examining two important problems in statistical genetics: genomic selection (i.e. phenotypic prediction) and association mapping (i.e. inference of significant variants or loci). State-of-the-art methods for genomic selection and association mapping are based on kernel regression and linear models, respectively. BAKR is the first method that is competitive in both settings.Comment: 22 pages, 3 figures, 3 tables; theory added; new simulations presented; references adde

    High-performance Kernel Machines with Implicit Distributed Optimization and Randomization

    Full text link
    In order to fully utilize "big data", it is often required to use "big models". Such models tend to grow with the complexity and size of the training data, and do not make strong parametric assumptions upfront on the nature of the underlying statistical dependencies. Kernel methods fit this need well, as they constitute a versatile and principled statistical methodology for solving a wide range of non-parametric modelling problems. However, their high computational costs (in storage and time) pose a significant barrier to their widespread adoption in big data applications. We propose an algorithmic framework and high-performance implementation for massive-scale training of kernel-based statistical models, based on combining two key technical ingredients: (i) distributed general purpose convex optimization, and (ii) the use of randomization to improve the scalability of kernel methods. Our approach is based on a block-splitting variant of the Alternating Directions Method of Multipliers, carefully reconfigured to handle very large random feature matrices, while exploiting hybrid parallelism typically found in modern clusters of multicore machines. Our implementation supports a variety of statistical learning tasks by enabling several loss functions, regularization schemes, kernels, and layers of randomized approximations for both dense and sparse datasets, in a highly extensible framework. We evaluate the ability of our framework to learn models on data from applications, and provide a comparison against existing sequential and parallel libraries.Comment: Work presented at MMDS 2014 (June 2014) and JSM 201
    • …
    corecore