708 research outputs found

    Radio Frequency Identification Technology: Applications, Technical Challenges and Strategies

    Get PDF
    Purpose - The purpose of this paper is to discuss the technology behind RFID systems, identify the applications of RFID in various industries, and discuss the technical challenges of RFID implementation and the corresponding strategies to overcome those challenges. Design/methodology/approach - Comprehensive literature review and integration of the findings from literature. Findings - Technical challenges of RFID implementation include tag cost, standards, tag and reader selection, data management, systems integration and security. The corresponding solution is suggested for each challenge. Research limitations/implications - A survey type research is needed to validate the results. Practical implications - This research offers useful technical guidance for companies which plan to implement RFID and we expect it to provide the motivation for much future research in this area. Originality/value - As the infancy of RFID applications, few researches have existed to address the technical issues of RFID implementation. Our research filled this gap

    From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification

    Get PDF
    The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost

    Energy efficient tag identification algorithms for RFID: survey, motivation and new design

    Get PDF
    RFID is widely applied in massive tag based applications, thus effective anti-collision algorithms to reduce communication overhead are of great importance to RFID in achieving energy and time efficiency. Existing MAC algorithms are primarily focusing on improving system throughput or reducing total identification time. However, with the advancement of embedded systems and mobile applications, the energy consumption aspect is increasingly important and should be considered in the new design. In this article, we start with a comprehensive review and analysis of the state-of-the-art anti-collision algorithms. Based on our existing works, we further discuss a novel design of anti-collision algorithm and show its effectiveness in achieving energy efficiency for the RFID system using EPCglobal C1 Gen2 UHF standard

    Integration Protocol Student Academic Information to Campus RFID Gate Pass System

    Get PDF
    Nowadays, security is a part that consent by many institution including academic for example in University campus, some  of  campus  have  been  implement  automatic  system  in campus area to control visitor to enter University also for   the staffs and students, but the system is in standalone with introduce new gate pass. Most of University has been use Information Technology (IT) in application for academic system such as student information, registration, results information, etc. In this paper discuss on integration of student information to gate pass system then do not require new card or pass for every student to enter campus area. Gate pass system is required information to match to database that who allow entering to campus, normally a new database is create for the system. In this case, University has student and staff database including lecturer, thus to be efficient the data in existing database can be use and integration using protocol that gate pass system give a command to database as request then verification of those data. Currently, student database stored in server room and the place far away from gate pass system, in order to make it transaction faster for visitor to enter then a mini database is setup onsite of gate system, but periodic updating is require or every new update in database. Results shows, database stored in student information system is more than 30,000 number of student and transaction time is less than 1 second and in average cycle time is 5.5 seconds for motorcycle lane and 7 seconds for car, that mean time for visitor to access gate pass system for entry campus is most reasonable
    corecore