3,306 research outputs found

    Numerical investigation on nonlocal problems with the fractional Laplacian

    Get PDF
    Nonlocal models have recently become a powerful tool for studying complex systems with long-range interactions or memory effects, which cannot be described properly by the traditional differential equations. So far, different nonlocal (or fractional differential) models have been proposed, among which models with the fractional Laplacian have been well applied. The fractional Laplacian (-Δ)α/2 represents the infinitesimal generator of a symmetric α-stable Lévy process. It has been used to describe anomalous diffusion, turbulent flows, stochastic dynamics, finance, and many other phenomena. However, the nonlocality of the fractional Laplacian introduces considerable challenges in its mathematical modeling, numerical simulations, and mathematical analysis. To advance the understanding of the fractional Laplacian, two novel and accurate finite difference methods -- the weighted trapezoidal method and the weighted linear interpolation method are developed for discretizing the fractional Laplacian. Numerical analysis is provided for the error estimates, and fast algorithms are developed for their efficient implementation. Compared to the current state-of-the-art methods, these two methods have higher accuracy but less computational complexity. As an application, the solution behaviors of the fractional Schördinger equation are investigated to understand the nonlocal effects of the fractional Laplacian. First, the eigenvalues and eigenfunctions of the fractional Schrödinger equation in an infinite potential well are studied, and the results provide insights into an open problem in the fractional quantum mechanics. Second, three Fourier spectral methods are developed and compared in solving the fractional nonlinear Schördinger equation (NLS), among which the SSFS method is more effective in the study of the plane wave dynamics. Sufficient conditions are provided to avoid the numerical instability of the SSFS method. In contrast to the standard NLS, the plane wave dynamics of the fractional NLS are more chaotic due to the long-range interactions --Abstract, page iii

    Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains

    Full text link
    Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decay very slowly, subject to certain power laws. Their numerical solutions are under-explored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identites related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by pre-computing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces, and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach

    Fourier spectral methods for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is computationally demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reactiondiffusion equations. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is show-cased by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models,together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator

    On the ground states and dynamics of space fractional nonlinear Schr\"{o}dinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions

    Get PDF
    In this paper, we propose some efficient and robust numerical methods to compute the ground states and dynamics of Fractional Schr\"{o}dinger Equation (FSE) with a rotation term and nonlocal nonlinear interactions. In particular, a newly developed Gaussian-sum (GauSum) solver is used for the nonlocal interaction evaluation \cite{EMZ2015}. To compute the ground states, we integrate the preconditioned Krylov subspace pseudo-spectral method \cite{AD1} and the GauSum solver. For the dynamics simulation, using the rotating Lagrangian coordinates transform \cite{BMTZ2013}, we first reformulate the FSE into a new equation without rotation. Then, a time-splitting pseudo-spectral scheme incorporated with the GauSum solver is proposed to simulate the new FSE
    • …
    corecore