1,126 research outputs found

    Optimization of Composite Cloud Service Processing with Virtual Machines

    Get PDF
    By leveraging virtual machine (VM) technology, we optimize cloud system performance based on refined resource allocation, in processing user requests with composite services. Our contribution is three-fold. (1) We devise a VM resource allocation scheme with a minimized processing overhead for task execution. (2) We comprehensively investigate the best-suited task scheduling policy with different design parameters. (3) We also explore the best-suited resource sharing scheme with adjusted divisible resource fractions on running tasks in terms of Proportional-Share Model (PSM), which can be split into absolute mode (called AAPSM) and relative mode (RAPSM). We implement a prototype system over a cluster environment deployed with 56 real VM instances, and summarized valuable experience from our evaluation. As the system runs in short supply, Lightest Workload First (LWF) is mostly recommended because it can minimize the overall response extension ratio (RER) for both sequential-mode tasks and parallel-mode tasks. In a competitive situation with over-commitment of resources, the best one is combining LWF with both AAPSM and RAPSM. It outperforms other solutions in the competitive situation, by 16+% w.r.t. the worst-case response time and by 7.4+% w.r.t. the fairness.published_or_final_versio

    A study on the performance of Oracle Grid Engine for computing intensive applications

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Computing intensive applications are an important family of applications in distributed computing domain. They have been object of study using different distributed computing paradigms and infrastructures. Such applications distinguish for their demanding needs for CPU computing, independently of the amount of data associated with the problem instance. Among computing intensive applications, there are applications based on simulations, aiming to maximize system resources for processing large computations for simulation. In this paper, we consider an application that simulates scheduling and resource allocation in a Grid computing system using Genetic Algorithms. In such application, a rather large number of simulations is needed to extract meaningful statistical results about the behaviour of the simulation results. We study the performance of Oracle Grid Engine for such application running in a Cluster of high computing capacities. Several scenarios were generated to measure the response time and queuing time under different workloads and number of nodes in the cluster.Peer ReviewedPostprint (author's final draft

    Reducing the operational cost of cloud data centers through renewable energy

    Get PDF
    The success of cloud computing services has led to big computing infrastructures that are complex to manage and very costly to operate. In particular, power supply dominates the operational costs of big infrastructures, and several solutions have to be put in place to alleviate these operational costs and make the whole infrastructure more sustainable. In this paper, we investigate the case of a complex infrastructure composed of data centers (DCs) located in different geographical areas in which renewable energy generators are installed, co-located with the data centers, to reduce the amount of energy that must be purchased by the power grid. Since renewable energy generators are intermittent, the load management strategies of the infrastructure have to be adapted to the intermittent nature of the sources. In particular, we consider EcoMultiCloud, a load management strategy already proposed in the literature for multi-objective load management strategies, and we adapt it to the presence of renewable energy sources. Hence, cost reduction is achieved in the load allocation process, when virtual machines (VMs) are assigned to a data center of the considered infrastructure, by considering both energy cost variations and the presence of renewable energy production. Performance is analyzed for a specific infrastructure composed of four data centers. Results show that, despite being intermittent and highly variable, renewable energy can be effectively exploited in geographical data centers when a smart load allocation strategy is implemented. In addition, the results confirm that EcoMultiCloud is very flexible and is suited to the considered scenario

    Adaptive Alert Management for Balancing Optimal Performance among Distributed CSOCs using Reinforcement Learning

    Get PDF
    Large organizations typically have Cybersecurity Operations Centers (CSOCs) distributed at multiple locations that are independently managed, and they have their own cybersecurity analyst workforce. Under normal operating conditions, the CSOC locations are ideally staffed such that the alerts generated from the sensors in a work-shift are thoroughly investigated by the scheduled analysts in a timely manner. Unfortunately, when adverse events such as increase in alert arrival rates or alert investigation rates occur, alerts have to wait for a longer duration for analyst investigation, which poses a direct risk to organizations. Hence, our research objective is to mitigate the impact of the adverse events by dynamically and autonomously re-allocating alerts to other location(s) such that the performances of all the CSOC locations remain balanced. This is achieved through the development of a novel centralized adaptive decision support system whose task is to re-allocate alerts from the affected locations to other locations. This re-allocation decision is non-trivial because the following must be determined: (1) timing of a re-allocation decision, (2) number of alerts to be re-allocated, and (3) selection of the locations to which the alerts must be distributed. The centralized decision-maker (henceforth referred to as agent) continuously monitors and controls the level of operational effectiveness-LOE (a quantified performance metric) of all the locations. The agent's decision-making framework is based on the principles of stochastic dynamic programming and is solved using reinforcement learning (RL). In the experiments, the RL approach is compared with both rule-based and load balancing strategies. By simulating real-world scenarios, learning the best decisions for the agent, and applying the decisions on sample realizations of the CSOC's daily operation, the results show that the RL agent outperforms both approaches by generating (near-) optimal decisions that maintain a balanced LOE among the CSOC locations. Furthermore, the scalability experiments highlight the practicality of adapting the method to a large number of CSOC locations

    A Proposed Scheduling Algorithm for IoT Applications in a Merged Environment of Edge, Fog, and Cloud

    Get PDF
    With the rapid increase of Internet of Things (IoT) devices and applications, the ordinary cloud computing paradigm soon becomes outdated. Fog computing paradigm extends services provided by a cloud to the edge of network in order to satisfy requirements of IoT applications such as low latency, locality awareness, low network traffic, mobility support, and so forth. Task scheduling in a Cloud-Fog environment plays a great role to assure diverse computational demands are met. However, the quest for an optimal solution for task scheduling in the such environment is exceedingly hard due to diversity of IoT applications, heterogeneity of computational resources, and multiple criteria. This study approaches the task scheduling problem with aims at improving service quality and load balancing in a merged computing system of Edge-Fog-Cloud. We propose a Multi-Objective Scheduling Algorithm (MOSA) that takes into account the job characteristics and utilization of different computational resources. The proposed solution is evaluated in comparison to other existing policies named LB, WRR, and MPSO. Numerical results show that the proposed algorithm improves the average response time while maintaining load balancing in comparison to three existing policies. Obtained results with the use of real workloads validate the outcomes

    Holistic Virtual Machine Scheduling in Cloud Datacenters towards Minimizing Total Energy

    Get PDF
    Energy consumed by Cloud datacenters has dramatically increased, driven by rapid uptake of applications and services globally provisioned through virtualization. By applying energy-aware virtual machine scheduling, Cloud providers are able to achieve enhanced energy efficiency and reduced operation cost. Energy consumption of datacenters consists of computing energy and cooling energy. However, due to the complexity of energy and thermal modeling of realistic Cloud datacenter operation, traditional approaches are unable to provide a comprehensive in-depth solution for virtual machine scheduling which encompasses both computing and cooling energy. This paper addresses this challenge by presenting an elaborate thermal model that analyzes the temperature distribution of airflow and server CPU. We propose GRANITE – a holistic virtual machine scheduling algorithm capable of minimizing total datacenter energy consumption. The algorithm is evaluated against other existing workload scheduling algorithms MaxUtil, TASA, IQR and Random using real Cloud workload characteristics extracted from Google datacenter tracelog. Results demonstrate that GRANITE consumes 4.3% - 43.6% less total energy in comparison to the state-of-the-art, and reduces the probability of critical temperature violation by 99.2% with 0.17% SLA violation rate as the performance penalty

    Decentralized load balancing in heterogeneous computational grids

    Get PDF
    With the rapid development of high-speed wide-area networks and powerful yet low-cost computational resources, grid computing has emerged as an attractive computing paradigm. The space limitations of conventional distributed systems can thus be overcome, to fully exploit the resources of under-utilised computing resources in every region around the world for distributed jobs. Workload and resource management are key grid services at the service level of grid software infrastructure, where issues of load balancing represent a common concern for most grid infrastructure developers. Although these are established research areas in parallel and distributed computing, grid computing environments present a number of new challenges, including large-scale computing resources, heterogeneous computing power, the autonomy of organisations hosting the resources, uneven job-arrival pattern among grid sites, considerable job transfer costs, and considerable communication overhead involved in capturing the load information of sites. This dissertation focuses on designing solutions for load balancing in computational grids that can cater for the unique characteristics of grid computing environments. To explore the solution space, we conducted a survey for load balancing solutions, which enabled discussion and comparison of existing approaches, and the delimiting and exploration of the apportion of solution space. A system model was developed to study the load-balancing problems in computational grid environments. In particular, we developed three decentralised algorithms for job dispatching and load balancing—using only partial information: the desirability-aware load balancing algorithm (DA), the performance-driven desirability-aware load-balancing algorithm (P-DA), and the performance-driven region-based load-balancing algorithm (P-RB). All three are scalable, dynamic, decentralised and sender-initiated. We conducted extensive simulation studies to analyse the performance of our load-balancing algorithms. Simulation results showed that the algorithms significantly outperform preexisting decentralised algorithms that are relevant to this research

    A Meta-Heuristic Load Balancer for Cloud Computing Systems

    Get PDF
    This paper introduces a strategy to allocate services on a cloud system without overloading the nodes and maintaining the system stability with minimum cost. We specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. A prototype meta-heuristic load balancer is demonstrated and experimental results are presented and discussed. We also propose a novel genetic algorithm, where population is seeded with the outputs of other meta-heuristic algorithms
    • …
    corecore