1,029 research outputs found

    Video Compressive Sensing for Dynamic MRI

    Full text link
    We present a video compressive sensing framework, termed kt-CSLDS, to accelerate the image acquisition process of dynamic magnetic resonance imaging (MRI). We are inspired by a state-of-the-art model for video compressive sensing that utilizes a linear dynamical system (LDS) to model the motion manifold. Given compressive measurements, the state sequence of an LDS can be first estimated using system identification techniques. We then reconstruct the observation matrix using a joint structured sparsity assumption. In particular, we minimize an objective function with a mixture of wavelet sparsity and joint sparsity within the observation matrix. We derive an efficient convex optimization algorithm through alternating direction method of multipliers (ADMM), and provide a theoretical guarantee for global convergence. We demonstrate the performance of our approach for video compressive sensing, in terms of reconstruction accuracy. We also investigate the impact of various sampling strategies. We apply this framework to accelerate the acquisition process of dynamic MRI and show it achieves the best reconstruction accuracy with the least computational time compared with existing algorithms in the literature.Comment: 30 pages, 9 figure

    Reliable and fast human body tracking under information deficiency

    Get PDF
    Session MA-4 System Identification and Pattern Recognition IHuman body tracking is useful in applications like medical diagnostic, human computer interface, visual surveillance etc. In most cases, only rough position of the target is needed, and blob tracking can be used. The blob region is located within a searching window, which is shifted and resized in each frame based on previous observations. The observations are the locations of the blob in the frames, and are fed into an estimator for predicting the position and the size of the searching window. However, a blob region is regarded as a noisy observation, and the information provided by the blob observation is deficient for most estimators to work well. In this paper, a reliable and efficient estimation algorithm using wavelet is proposed to track human body under information deficiency. The human body is located roughly within a small searching window using color and motion as heuristics. The location and the size of the searching window are estimated using the proposed wavelet estimation scheme. Experimental results show that human body can be tracked accurately and efficiently using the proposed method. The tracker works well in various conditions like clutter background, and background with distractors.published_or_final_versionThe 2003 IEEE Intelligent Automation Conference (2003年中国智能自动化会议), Hong Kong, 15-17 December 2003. In Proceedings of the IEEE Intelligent Automation Conference, 2003, p. 491-49

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Super Resolution of Wavelet-Encoded Images and Videos

    Get PDF
    In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution. Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands. Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images

    Dimensionality reduction and sparse representations in computer vision

    Get PDF
    The proliferation of camera equipped devices, such as netbooks, smartphones and game stations, has led to a significant increase in the production of visual content. This visual information could be used for understanding the environment and offering a natural interface between the users and their surroundings. However, the massive amounts of data and the high computational cost associated with them, encumbers the transfer of sophisticated vision algorithms to real life systems, especially ones that exhibit resource limitations such as restrictions in available memory, processing power and bandwidth. One approach for tackling these issues is to generate compact and descriptive representations of image data by exploiting inherent redundancies. We propose the investigation of dimensionality reduction and sparse representations in order to accomplish this task. In dimensionality reduction, the aim is to reduce the dimensions of the space where image data reside in order to allow resource constrained systems to handle them and, ideally, provide a more insightful description. This goal is achieved by exploiting the inherent redundancies that many classes of images, such as faces under different illumination conditions and objects from different viewpoints, exhibit. We explore the description of natural images by low dimensional non-linear models called image manifolds and investigate the performance of computer vision tasks such as recognition and classification using these low dimensional models. In addition to dimensionality reduction, we study a novel approach in representing images as a sparse linear combination of dictionary examples. We investigate how sparse image representations can be used for a variety of tasks including low level image modeling and higher level semantic information extraction. Using tools from dimensionality reduction and sparse representation, we propose the application of these methods in three hierarchical image layers, namely low-level features, mid-level structures and high-level attributes. Low level features are image descriptors that can be extracted directly from the raw image pixels and include pixel intensities, histograms, and gradients. In the first part of this work, we explore how various techniques in dimensionality reduction, ranging from traditional image compression to the recently proposed Random Projections method, affect the performance of computer vision algorithms such as face detection and face recognition. In addition, we discuss a method that is able to increase the spatial resolution of a single image, without using any training examples, according to the sparse representations framework. In the second part, we explore mid-level structures, including image manifolds and sparse models, produced by abstracting information from low-level features and offer compact modeling of high dimensional data. We propose novel techniques for generating more descriptive image representations and investigate their application in face recognition and object tracking. In the third part of this work, we propose the investigation of a novel framework for representing the semantic contents of images. This framework employs high level semantic attributes that aim to bridge the gap between the visual information of an image and its textual description by utilizing low level features and mid level structures. This innovative paradigm offers revolutionary possibilities including recognizing the category of an object from purely textual information without providing any explicit visual example
    corecore