39,276 research outputs found

    Bounded Concurrent Timestamp Systems Using Vector Clocks

    Full text link
    Shared registers are basic objects used as communication mediums in asynchronous concurrent computation. A concurrent timestamp system is a higher typed communication object, and has been shown to be a powerful tool to solve many concurrency control problems. It has turned out to be possible to construct such higher typed objects from primitive lower typed ones. The next step is to find efficient constructions. We propose a very efficient wait-free construction of bounded concurrent timestamp systems from 1-writer multireader registers. This finalizes, corrects, and extends, a preliminary bounded multiwriter construction proposed by the second author in 1986. That work partially initiated the current interest in wait-free concurrent objects, and introduced a notion of discrete vector clocks in distributed algorithms.Comment: LaTeX source, 35 pages; To apper in: J. Assoc. Comp. Mac

    A Multi-Core Solver for Parity Games

    Get PDF
    We describe a parallel algorithm for solving parity games,\ud with applications in, e.g., modal mu-calculus model\ud checking with arbitrary alternations, and (branching) bisimulation\ud checking. The algorithm is based on Jurdzinski's Small Progress\ud Measures. Actually, this is a class of algorithms, depending on\ud a selection heuristics.\ud \ud Our algorithm operates lock-free, and mostly wait-free (except for\ud infrequent termination detection), and thus allows maximum\ud parallelism. Additionally, we conserve memory by avoiding storage\ud of predecessor edges for the parity graph through strictly\ud forward-looking heuristics.\ud \ud We evaluate our multi-core implementation's behaviour on parity games\ud obtained from mu-calculus model checking problems for a set of\ud communication protocols, randomly generated problem instances, and\ud parametric problem instances from the literature.\ud \u
    • ā€¦
    corecore