18,627 research outputs found

    DCCast: Efficient Point to Multipoint Transfers Across Datacenters

    Full text link
    Using multiple datacenters allows for higher availability, load balancing and reduced latency to customers of cloud services. To distribute multiple copies of data, cloud providers depend on inter-datacenter WANs that ought to be used efficiently considering their limited capacity and the ever-increasing data demands. In this paper, we focus on applications that transfer objects from one datacenter to several datacenters over dedicated inter-datacenter networks. We present DCCast, a centralized Point to Multi-Point (P2MP) algorithm that uses forwarding trees to efficiently deliver an object from a source datacenter to required destination datacenters. With low computational overhead, DCCast selects forwarding trees that minimize bandwidth usage and balance load across all links. With simulation experiments on Google's GScale network, we show that DCCast can reduce total bandwidth usage and tail Transfer Completion Times (TCT) by up to 50%50\% compared to delivering the same objects via independent point-to-point (P2P) transfers.Comment: 9th USENIX Workshop on Hot Topics in Cloud Computing, https://www.usenix.org/conference/hotcloud17/program/presentation/noormohammadpou

    Algorithms for Constructing Overlay Networks For Live Streaming

    Full text link
    We present a polynomial time approximation algorithm for constructing an overlay multicast network for streaming live media events over the Internet. The class of overlay networks constructed by our algorithm include networks used by Akamai Technologies to deliver live media events to a global audience with high fidelity. We construct networks consisting of three stages of nodes. The nodes in the first stage are the entry points that act as sources for the live streams. Each source forwards each of its streams to one or more nodes in the second stage that are called reflectors. A reflector can split an incoming stream into multiple identical outgoing streams, which are then sent on to nodes in the third and final stage that act as sinks and are located in edge networks near end-users. As the packets in a stream travel from one stage to the next, some of them may be lost. A sink combines the packets from multiple instances of the same stream (by reordering packets and discarding duplicates) to form a single instance of the stream with minimal loss. Our primary contribution is an algorithm that constructs an overlay network that provably satisfies capacity and reliability constraints to within a constant factor of optimal, and minimizes cost to within a logarithmic factor of optimal. Further in the common case where only the transmission costs are minimized, we show that our algorithm produces a solution that has cost within a factor of 2 of optimal. We also implement our algorithm and evaluate it on realistic traces derived from Akamai's live streaming network. Our empirical results show that our algorithm can be used to efficiently construct large-scale overlay networks in practice with near-optimal cost

    A note on the data-driven capacity of P2P networks

    Get PDF
    We consider two capacity problems in P2P networks. In the first one, the nodes have an infinite amount of data to send and the goal is to optimally allocate their uplink bandwidths such that the demands of every peer in terms of receiving data rate are met. We solve this problem through a mapping from a node-weighted graph featuring two labels per node to a max flow problem on an edge-weighted bipartite graph. In the second problem under consideration, the resource allocation is driven by the availability of the data resource that the peers are interested in sharing. That is a node cannot allocate its uplink resources unless it has data to transmit first. The problem of uplink bandwidth allocation is then equivalent to constructing a set of directed trees in the overlay such that the number of nodes receiving the data is maximized while the uplink capacities of the peers are not exceeded. We show that the problem is NP-complete, and provide a linear programming decomposition decoupling it into a master problem and multiple slave subproblems that can be resolved in polynomial time. We also design a heuristic algorithm in order to compute a suboptimal solution in a reasonable time. This algorithm requires only a local knowledge from nodes, so it should support distributed implementations. We analyze both problems through a series of simulation experiments featuring different network sizes and network densities. On large networks, we compare our heuristic and its variants with a genetic algorithm and show that our heuristic computes the better resource allocation. On smaller networks, we contrast these performances to that of the exact algorithm and show that resource allocation fulfilling a large part of the peer can be found, even for hard configuration where no resources are in excess.Comment: 10 pages, technical report assisting a submissio

    Cooperative announcement-based caching for video-on-demand streaming

    Get PDF
    Recently, video-on-demand (VoD) streaming services like Netflix and Hulu have gained a lot of popularity. This has led to a strong increase in bandwidth capacity requirements in the network. To reduce this network load, the design of appropriate caching strategies is of utmost importance. Based on the fact that, typically, a video stream is temporally segmented into smaller chunks that can be accessed and decoded independently, cache replacement strategies have been developed that take advantage of this temporal structure in the video. In this paper, two caching strategies are proposed that additionally take advantage of the phenomenon of binge watching, where users stream multiple consecutive episodes of the same series, reported by recent user behavior studies to become the everyday behavior. Taking into account this information allows us to predict future segment requests, even before the video playout has started. Two strategies are proposed, both with a different level of coordination between the caches in the network. Using a VoD request trace based on binge watching user characteristics, the presented algorithms have been thoroughly evaluated in multiple network topologies with different characteristics, showing their general applicability. It was shown that in a realistic scenario, the proposed election-based caching strategy can outperform the state-of-the-art by 20% in terms of cache hit ratio while using 4% less network bandwidth
    • …
    corecore