74 research outputs found

    On-demand fuzzy clustering and ant-colony optimisation based mobile data collection in wireless sensor network

    Get PDF
    In a wireless sensor network (WSN), sensor nodes collect data from the environment and transfer this data to an end user through multi-hop communication. This results in high energy dissipation of the devices. Thus, balancing of energy consumption is a major concern in such kind of network. Appropriate cluster head (CH) selection may provide to be an efficient way to reduce the energy dissipation and prolonging the network lifetime in WSN. This paper has adopted the concept of fuzzy if-then rules to choose the cluster head based on certain fuzzy descriptors. To optimise the fuzzy membership functions, Particle Swarm Optimisation (PSO) has been used to improve their ranges. Moreover, recent study has confirmed that the introduction of a mobile collector in a network which collects data through short-range communications also aids in high energy conservation. In this work, the network is divided into clusters and a mobile collector starts from the static sink or base station and moves through each of these clusters and collect data from the chosen cluster heads in a single-hop fashion. Mobility based on Ant-Colony Optimisation (ACO) has already proven to be an efficient method which is utilised in this work. Additionally, instead of performing clustering in every round, CH is selected on demand. The performance of the proposed algorithm has been compared with some existing clustering algorithms. Simulation results show that the proposed protocol is more energy-efficient and provides better packet delivery ratio as compared to the existing protocols for data collection obtained through Matlab Simulations

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Reliable cost-optimal deployment of wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) technology is currently considered one of the key technologies for realizing the Internet of Things (IoT). Many of the important WSNs applications are critical in nature such that the failure of the WSN to carry out its required tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the fundamental requirements of the network deployment strategy. Achieving this requirement at a minimum deployment cost is particularly important for critical applications in which deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in the traditional sense, especially in conjunction with minimizing the deployment cost, has not been considered as a deployment requirement in existing WSN deployment algorithms to the best of our knowledge. Addressing this major limitation is the central focus of this dissertation. We define the reliable cost-optimal WSN deployment as the one that has minimum deployment cost with a reliability level that meets or exceeds a minimum level specified by the targeted application. We coin the problem of finding such deployments, for a given set of application-specific parameters, the Minimum-Cost Reliability-Constrained Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation, we propose a novel WSN reliability metric which adopts a more accurate SN model than the model used in the existing metrics. The proposed reliability metric is used to formulate the MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-Complete. Two heuristic WSN deployment optimization algorithms are then developed to find high quality solutions for the MCRC-SDP. Finally, we investigate the practical realization of the techniques that we developed as solutions of the MCRC-SDP. For this purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable for managing such reliable cost-optimal deployments. Accordingly, we propose a practical TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such deployments. Experimental results suggest that the proposed TCP\u27s overhead and network Time To Repair (TTR) are relatively low which demonstrates the applicability of our proposed deployment solution in practice

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Muhammad Imran” is provided in this record*

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area

    Energy-Efficient and Fresh Data Collection in IoT Networks by Machine Learning

    Get PDF
    The Internet-of-Things (IoT) is rapidly changing our lives in almost every field, such as smart agriculture, environmental monitoring, intelligent manufacturing system, etc. How to improve the efficiency of data collection in IoT networks has attracted increasing attention. Clustering-based algorithms are the most common methods used to improve the efficiency of data collection. They group devices into distinct clusters, where each device belongs to one cluster only. All member devices sense their surrounding environment and transmit the results to the cluster heads (CHs). The CHs then send the received data to a control center via single-hop or multi-hops transmission. Using unmanned aerial vehicles (UAVs) to collect data in IoT networks is another effective method for improving the efficiency of data collection. This is because UAVs can be flexibly deployed to communicate with ground devices via reliable air-to-ground communication links. Given that energy-efficient data collection and freshness of the collected data are two important factors in IoT networks, this thesis is concerned with designing algorithms to improve the energy efficiency of data collection and guarantee the freshness of the collected data. Our first contribution is an improved soft-k-means (IS-k-means) clustering algorithm that balances the energy consumption of nodes in wireless sensor networks (WSNs). The techniques of “clustering by fast search and find of density peaks” (CFSFDP) and kernel density estimation (KDE) are used to improve the selection of the initial cluster centers of the soft k-means clustering algorithm. Then, we utilize the flexibility of the soft-k-means and reassign member nodes by considering their membership probabilities at the boundary of clusters to balance the number of nodes per cluster. Furthermore, we use multi-CHs to balance the energy consumption within clusters. Extensive simulation results show that, on average, the proposed algorithm can postpone the first node death, the half of nodes death, and the last node death when compared to various clustering algorithms from the literature. The second contribution tackles the problem of minimizing the total energy consumption of the UAV-IoT network. Specifically, we formulate and solve the optimization problem that jointly finds the UAV’s trajectory and selects CHs in the IoT network. The formulated problem is a constrained combinatorial optimization and we develop a novel deep reinforcement learning (DRL) with a sequential model strategy to solve it. The proposed method can effectively learn the policy represented by a sequence-to-sequence neural network for designing the UAV’s trajectory in an unsupervised manner. Extensive simulation results show that the proposed DRL method can find the UAV’s trajectory with much less energy consumption when compared to other baseline algorithms and achieves close-to-optimal performance. In addition, simulation results show that the model trained by our proposed DRL algorithm has an excellent generalization ability, i.e., it can be used for larger-size problems without the need to retrain the model. The third contribution is also concerned with minimizing the total energy consumption of the UAV-aided IoT networks. A novel DRL technique, namely the pointer network-A* (Ptr-A*), is proposed, which can efficiently learn the UAV trajectory policy for minimizing the energy consumption. The UAV’s start point and the ground network with a set of pre-determined clusters are fed to the Ptr-A*, and the Ptr-A* outputs a group of CHs and the visiting order of CHs, i.e., the UAV’s trajectory. The parameters of the Ptr-A* are trained on problem instances having small-scale clusters by using the actor-critic algorithm in an unsupervised manner. Simulation results show that the models trained based on 20- clusters and 40-clusters have a good generalization ability to solve the UAV’s trajectory planning problem with different numbers of clusters, without the need to retrain the models. Furthermore, the results show that our proposed DRL algorithm outperforms two baseline techniques. In the last contribution, the new concept, age-of-information (AoI), is used to quantify the freshness of collected data in IoT networks. An optimization problem is formulated to minimize the total AoI of the collected data by the UAV from the ground IoT network. Since the total AoI of the IoT network depends on the flight time of the UAV and the data collection time at hovering points, we jointly optimize the selection of the hovering points and the visiting order to these points. We exploit the state-of-the-art transformer and the weighted A* to design a machine learning algorithm to solve the formulated problem. The whole UAV-IoT system, including all ground clusters and potential hovering points of the UAV, is fed to the encoder network of the proposed algorithm, and the algorithm’s decoder network outputs the visiting order to ground clusters. Then, the weighted A* is used to find the hovering point for each cluster in the ground IoT network. Simulation results show that the model trained by the proposed algorithm has a good generalization ability to generate solutions for IoT networks with different numbers of ground clusters, without the need to retrain the model. Furthermore, results show that our proposed algorithm can find better UAV trajectories with the minimum total AoI when compared to other algorithms

    Models for Efficient Automated Site Data Acquisition

    Get PDF
    Accurate and timely data acquisition for tracking and progress reporting is essential for efficient management and successful project delivery. Considerable research work has been conducted to develop methods utilizing automated site data acquisition for tracking and progress reporting. However, these developments are challenged by: the dynamic and noisy nature of construction jobsites; the indoor localization accuracy; and the data processing and extraction of actionable information. Limited research work attempted to study and develop customized design of wireless sensor networks to meet the above challenges and overcome limitations of utilizing off-the-shelf technologies. The objective of this research is to study, design, configure and develop fully customized automated site data acquisition models, with a special focus on near real-time automated tracking and control of construction operations embracing cutting edge innovations in wireless and remote sensing technologies. In this context, wireless and remote sensing technologies are integrated in two customized prototypes to monitor and collect data from construction jobsites. This data is then processed and mined to generate meaningful and actionable information. The developed prototypes are expected to have wider scope of applications in construction management, such as improving construction safety, monitoring the condition of civil infrastructure and reducing energy consumption in buildings. Two families of prototypes were developed in this research; Sensor Aided GPS (SA-GPS) prototype, which is designed and developed for tracking outdoor construction operations such as earthmoving; and Self-Calibrated Wireless Sensor Network (SC-WSN), which is designed for indoor localization and tracking of construction resources (labor, materials and equipment). These prototypes along with their hardware and software are encapsulated in a computational framework. The framework houses a set of algorithms coded in C# to enable efficient data processing and fusion that support tracking and progress reporting. Both the hardware prototypes and software algorithms were progressively tested, evaluated and re-designed using Rapid Prototyping approach. The validation process of the developed prototypes encompasses three steps; (1) simulation to validate the prototypes’ design virtually using MATLAB, (2) laboratory experiments to evaluate prototypes’ functionality in real time, and (3) testing on scaled case studies after fine-tuning the prototype design based on the results obtained from the first two steps. The SA-GPS prototype consists of a microcontroller equipped with GPS module as well as a number of sensors such as accelerometer, barometric pressure sensor, Bluetooth proximity and strain gauges. The results of testing the developed SA-GPS prototype on scaled construction jobsite indicated that it was capable of estimating project progress within 3% mean absolute percentage error and 1% standard deviation on 16 trials, in comparison to the standalone GPS which had approximately 12% mean absolute percentage error and 2% standard deviation. The SC-WSN prototype incorporates two main features. The first is the use of the Kalman filtering and smoothing for the RSSI signal to provide more stable and predictable signal for estimating the distance between a reader and a tag. The second is the use of a developed dynamic path-loss model which continually optimizes its parameters to cope with the dynamically changing construction environment using Particle Swarm Optimization (PSO) algorithm. The laboratory testing indicated the improvement in location estimation, where the produced location estimates using SC_WSN had an average error of 0.66m in comparison to 1.67m using the raw RSSI signal. Also the results indicated 60% accuracy improvement in estimating locations using the developed dynamic model. The developed prototypes are not only expected to reduce the risk of project cost and duration overruns by timely and early detection of deviations from project plan, but also enables project managers to observe and oversee their project’s status in near real-time. It is expected that the accuracy of the developed hardware, can be achieved on large-scale real construction projects. This is attributed to the fact that the developed prototype does not require any scalable improvements on its hardware technology, nor does it require any additional computational changes to its developed algorithms and software
    • 

    corecore