78,504 research outputs found

    A revised implicit equal-weights particle filter

    Get PDF
    Particle filters are fully non-linear data assimilation methods and as such are highly relevant. While the standard particle filter degenerates for high-dimensional systems, recent developments have opened the way for new particle filters that can be used in such systems. The implicit equal-weights particle filter (IEWPF) is an efficient approach which avoids filter degeneracy because it gives equal particle weights by construction. The method uses implicit sampling whereby auxiliary vectors drawn from a proposal distribution undergo a transformation before they are added to each particle. In the original formulation of the IEWPF, the proposal distribution has a gap causing all but one particle to have an inaccessible region in state space. We show that this leads to a systematic bias in the predictions and we modify the proposal distribution to eliminate the gap. We achieved this by using a two-stage proposal method, where a single variance parameter is tuned to obtain adequate statistical coverage properties of the predictive distribution. We discuss properties of the implicit mapping from an auxiliary random vector to the state vector, keeping in mind the aim of avoiding particle resampling. The revised filter is tested on linear and weakly nonlinear dynamical models in low-dimensional and moderately high-dimensional settings, demonstrating the suiccess of the new methodology in removing the bias

    Accelerating delayed-acceptance Markov chain Monte Carlo algorithms

    Full text link
    Delayed-acceptance Markov chain Monte Carlo (DA-MCMC) samples from a probability distribution via a two-stages version of the Metropolis-Hastings algorithm, by combining the target distribution with a "surrogate" (i.e. an approximate and computationally cheaper version) of said distribution. DA-MCMC accelerates MCMC sampling in complex applications, while still targeting the exact distribution. We design a computationally faster, albeit approximate, DA-MCMC algorithm. We consider parameter inference in a Bayesian setting where a surrogate likelihood function is introduced in the delayed-acceptance scheme. When the evaluation of the likelihood function is computationally intensive, our scheme produces a 2-4 times speed-up, compared to standard DA-MCMC. However, the acceleration is highly problem dependent. Inference results for the standard delayed-acceptance algorithm and our approximated version are similar, indicating that our algorithm can return reliable Bayesian inference. As a computationally intensive case study, we introduce a novel stochastic differential equation model for protein folding data.Comment: 40 pages, 21 figures, 10 table

    Langevin and Hamiltonian based Sequential MCMC for Efficient Bayesian Filtering in High-dimensional Spaces

    Full text link
    Nonlinear non-Gaussian state-space models arise in numerous applications in statistics and signal processing. In this context, one of the most successful and popular approximation techniques is the Sequential Monte Carlo (SMC) algorithm, also known as particle filtering. Nevertheless, this method tends to be inefficient when applied to high dimensional problems. In this paper, we focus on another class of sequential inference methods, namely the Sequential Markov Chain Monte Carlo (SMCMC) techniques, which represent a promising alternative to SMC methods. After providing a unifying framework for the class of SMCMC approaches, we propose novel efficient strategies based on the principle of Langevin diffusion and Hamiltonian dynamics in order to cope with the increasing number of high-dimensional applications. Simulation results show that the proposed algorithms achieve significantly better performance compared to existing algorithms
    • …
    corecore