889 research outputs found

    A Review of Radio Frequency Based Localization for Aerial and Ground Robots with 5G Future Perspectives

    Full text link
    Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    An accurate RSS/AoA-based localization method for internet of underwater things

    Get PDF
    Localization is an important issue for Internet of Underwater Things (IoUT) since the performance of a large number of underwater applications highly relies on the position information of underwater sensors. In this paper, we propose a hybrid localization approach based on angle-of-arrival (AoA) and received signal strength (RSS) for IoUT. We consider a smart fishing scenario in which using the proposed approach fishers can find fishes’ locations effectively. The proposed method collects the RSS observation and estimates the AoA based on error variance. To have a more realistic deployment, we assume that the perfect noise information is not available. Thus, a minimax approach is provided in order to optimize the worst-case performance and enhance the estimation accuracy under the unknown parameters. Furthermore, we analyze the mismatch of the proposed estimator using mean-square error (MSE). We then develop semidefinite programming (SDP) based method which relaxes the non-convex constraints into the convex constraints to solve the localization problem in an efficient way. Finally, the Cramer–Rao lower bounds (CRLBs) are derived to bound the performance of the RSS-based estimator. In comparison with other localization schemes, the proposed method increases localization accuracy by more than 13%. Our method can localize 96% of sensor nodes with less than 5% positioning error when there exist 25% anchors

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    Efficient Clustering Protocol Based on Stochastic Matrix & MCL and Data Routing for Mobile Wireless Sensors Network

    Get PDF
    In this paper, we have already presented a new approach for data routing dedicated to mobile Wireless Sensors Network (WSN) based on clustering. The proposed method is based on stochastic matrix and on the Markov Chain Cluster (MCL) algorithm to organize a large number of mobile sensors into clusters without defining the required clusters number in advance. It is based on mobile sensors connectivity to determinethe optimal number of clusters and to form compact and well separated clusters. Our proposed approach is a distributed method using nodes locations, degrees and theirs residual energies during the cluster head election. Simulation results showed that the proposed approach reduced the loss packets rate by 80%, the energy consumption by 30% and improved the data delivery rate by 70% compared to LEACH-M protocol. Moreover, it outperforms the E-MBC protocol and reduced the average energy consumption and loss packets rate by 60%; as well as it improved the success packets delivery rate by 40%
    • …
    corecore