6,252 research outputs found

    Product Classification in E-Commerce using Distributional Semantics

    Full text link
    Product classification is the task of automatically predicting a taxonomy path for a product in a predefined taxonomy hierarchy given a textual product description or title. For efficient product classification we require a suitable representation for a document (the textual description of a product) feature vector and efficient and fast algorithms for prediction. To address the above challenges, we propose a new distributional semantics representation for document vector formation. We also develop a new two-level ensemble approach utilizing (with respect to the taxonomy tree) a path-wise, node-wise and depth-wise classifiers for error reduction in the final product classification. Our experiments show the effectiveness of the distributional representation and the ensemble approach on data sets from a leading e-commerce platform and achieve better results on various evaluation metrics compared to earlier approaches

    Wisdom of Crowds cluster ensemble

    Full text link
    The Wisdom of Crowds is a phenomenon described in social science that suggests four criteria applicable to groups of people. It is claimed that, if these criteria are satisfied, then the aggregate decisions made by a group will often be better than those of its individual members. Inspired by this concept, we present a novel feedback framework for the cluster ensemble problem, which we call Wisdom of Crowds Cluster Ensemble (WOCCE). Although many conventional cluster ensemble methods focusing on diversity have recently been proposed, WOCCE analyzes the conditions necessary for a crowd to exhibit this collective wisdom. These include decentralization criteria for generating primary results, independence criteria for the base algorithms, and diversity criteria for the ensemble members. We suggest appropriate procedures for evaluating these measures, and propose a new measure to assess the diversity. We evaluate the performance of WOCCE against some other traditional base algorithms as well as state-of-the-art ensemble methods. The results demonstrate the efficiency of WOCCE's aggregate decision-making compared to other algorithms.Comment: Intelligent Data Analysis (IDA), IOS Pres

    Clustering and Learning from Imbalanced Data

    Full text link
    A learning classifier must outperform a trivial solution, in case of imbalanced data, this condition usually does not hold true. To overcome this problem, we propose a novel data level resampling method - Clustering Based Oversampling for improved learning from class imbalanced datasets. The essential idea behind the proposed method is to use the distance between a minority class sample and its respective cluster centroid to infer the number of new sample points to be generated for that minority class sample. The proposed algorithm has very less dependence on the technique used for finding cluster centroids and does not effect the majority class learning in any way. It also improves learning from imbalanced data by incorporating the distribution structure of minority class samples in generation of new data samples. The newly generated minority class data is handled in a way as to prevent outlier production and overfitting. Implementation analysis on different datasets using deep neural networks as the learning classifier shows the effectiveness of this method as compared to other synthetic data resampling techniques across several evaluation metrics.Comment: 9 pages, To Appear at NIPS 2018 Workshop

    Scalable Constrained Clustering: A Generalized Spectral Method

    Full text link
    We present a simple spectral approach to the well-studied constrained clustering problem. It captures constrained clustering as a generalized eigenvalue problem with graph Laplacians. The algorithm works in nearly-linear time and provides concrete guarantees for the quality of the clusters, at least for the case of 2-way partitioning. In practice this translates to a very fast implementation that consistently outperforms existing spectral approaches both in speed and quality.Comment: accepted to appear in AISTATS 2016. arXiv admin note: text overlap with arXiv:1504.0065

    Machine learning based hyperspectral image analysis: A survey

    Full text link
    Hyperspectral sensors enable the study of the chemical properties of scene materials remotely for the purpose of identification, detection, and chemical composition analysis of objects in the environment. Hence, hyperspectral images captured from earth observing satellites and aircraft have been increasingly important in agriculture, environmental monitoring, urban planning, mining, and defense. Machine learning algorithms due to their outstanding predictive power have become a key tool for modern hyperspectral image analysis. Therefore, a solid understanding of machine learning techniques have become essential for remote sensing researchers and practitioners. This paper reviews and compares recent machine learning-based hyperspectral image analysis methods published in literature. We organize the methods by the image analysis task and by the type of machine learning algorithm, and present a two-way mapping between the image analysis tasks and the types of machine learning algorithms that can be applied to them. The paper is comprehensive in coverage of both hyperspectral image analysis tasks and machine learning algorithms. The image analysis tasks considered are land cover classification, target detection, unmixing, and physical parameter estimation. The machine learning algorithms covered are Gaussian models, linear regression, logistic regression, support vector machines, Gaussian mixture model, latent linear models, sparse linear models, Gaussian mixture models, ensemble learning, directed graphical models, undirected graphical models, clustering, Gaussian processes, Dirichlet processes, and deep learning. We also discuss the open challenges in the field of hyperspectral image analysis and explore possible future directions

    SCSP: Spectral Clustering Filter Pruning with Soft Self-adaption Manners

    Full text link
    Deep Convolutional Neural Networks (CNN) has achieved significant success in computer vision field. However, the high computational cost of the deep complex models prevents the deployment on edge devices with limited memory and computational resource. In this paper, we proposed a novel filter pruning for convolutional neural networks compression, namely spectral clustering filter pruning with soft self-adaption manners (SCSP). We first apply spectral clustering on filters layer by layer to explore their intrinsic connections and only count on efficient groups. By self-adaption manners, the pruning operations can be done in few epochs to let the network gradually choose meaningful groups. According to this strategy, we not only achieve model compression while keeping considerable performance, but also find a novel angle to interpret the model compression process

    Diversity in Machine Learning

    Full text link
    Machine learning methods have achieved good performance and been widely applied in various real-world applications. They can learn the model adaptively and be better fit for special requirements of different tasks. Generally, a good machine learning system is composed of plentiful training data, a good model training process, and an accurate inference. Many factors can affect the performance of the machine learning process, among which the diversity of the machine learning process is an important one. The diversity can help each procedure to guarantee a total good machine learning: diversity of the training data ensures that the training data can provide more discriminative information for the model, diversity of the learned model (diversity in parameters of each model or diversity among different base models) makes each parameter/model capture unique or complement information and the diversity in inference can provide multiple choices each of which corresponds to a specific plausible local optimal result. Even though the diversity plays an important role in machine learning process, there is no systematical analysis of the diversification in machine learning system. In this paper, we systematically summarize the methods to make data diversification, model diversification, and inference diversification in the machine learning process, respectively. In addition, the typical applications where the diversity technology improved the machine learning performance have been surveyed, including the remote sensing imaging tasks, machine translation, camera relocalization, image segmentation, object detection, topic modeling, and others. Finally, we discuss some challenges of the diversity technology in machine learning and point out some directions in future work.Comment: Accepted by IEEE Acces

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Processing techniques development

    Get PDF
    There are no author-identified significant results in this report

    Structure fusion based on graph convolutional networks for semi-supervised classification

    Full text link
    Suffering from the multi-view data diversity and complexity for semi-supervised classification, most of existing graph convolutional networks focus on the networks architecture construction or the salient graph structure preservation, and ignore the the complete graph structure for semi-supervised classification contribution. To mine the more complete distribution structure from multi-view data with the consideration of the specificity and the commonality, we propose structure fusion based on graph convolutional networks (SF-GCN) for improving the performance of semi-supervised classification. SF-GCN can not only retain the special characteristic of each view data by spectral embedding, but also capture the common style of multi-view data by distance metric between multi-graph structures. Suppose the linear relationship between multi-graph structures, we can construct the optimization function of structure fusion model by balancing the specificity loss and the commonality loss. By solving this function, we can simultaneously obtain the fusion spectral embedding from the multi-view data and the fusion structure as adjacent matrix to input graph convolutional networks for semi-supervised classification. Experiments demonstrate that the performance of SF-GCN outperforms that of the state of the arts on three challenging datasets, which are Cora,Citeseer and Pubmed in citation networks
    corecore