43,326 research outputs found

    A Fractional Lie Group Method For Anomalous Diffusion Equations

    Full text link
    Lie group method provides an efficient tool to solve a differential equation. This paper suggests a fractional partner for fractional partial differential equations using a fractional characteristic method. A space-time fractional diffusion equation is used as an example to illustrate the effectiveness of the Lie group method.Comment: 5 pages,in pres

    Computationally efficient methods for solving time-variable-order time-space fractional reaction-diffusion equation

    Get PDF
    Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach

    Approximation solution of the fractional parabolic partial differential equation by the half-sweep and preconditioned relaxation

    Get PDF
    In this study, the numerical solution of a space-fractional parabolic partial differential equation was considered. The investigation of the solution was made by focusing on the space-fractional diffusion equation (SFDE) problem. Note that the symmetry of an efficient approximation to the SFDE based on a numerical method is related to the compatibility of a discretization scheme and a linear system solver. The application of the one-dimensional, linear, unconditionally stable, and implicit finite difference approximation to SFDE was studied. The general differential equation of the SFDE was discretized using the space-fractional derivative of Caputo with a half-sweep finite difference scheme. The implicit approximation to the SFDE was formulated, and the formation of a linear system with a coefficient matrix, which was large and sparse, is shown. The construction of a general preconditioned system of equation is also presented. This study’s contribution is the introduction of a half-sweep preconditioned successive over relaxation (HSPSOR) method for the solution of the SFDE-based system of equation. This work extended the use of the HSPSOR as an efficient numerical method for the time-fractional diffusion equation, which has been presented in the 5th North American International Conference on industrial engineering and operations management in Detroit, Michigan, USA, 10–14 August 2020. The current work proposed several SFDE examples to validate the performance of the HSPSOR iterative method in solving the fractional diffusion equation. The outcome of the numerical investigation illustrated the competence of the HSPSOR to solve the SFDE and proved that the HSPSOR is superior to the standard approximation, which is the full-sweep preconditioned SOR (FSPSOR), in terms of computational complexity

    A splitting uniformly convergent method for one-dimensional parabolic singularly perturbed convection-diffusion systems

    Get PDF
    In this paper we deal with solving robustly and efficiently one-dimensional linear parabolic singularly perturbed systems of convection-diffusion type, where the diffusion parameters can be different at each equation and even they can have different orders of magnitude. The numerical algorithm combines the classical upwind finite difference scheme to discretize in space and the fractional implicit Euler method together with an appropriate splitting by components to discretize in time. We prove that if the spatial discretization is defined on an adequate piecewise uniform Shishkin mesh, the fully discrete scheme is uniformly convergent of first order in time and of almost first order in space. The technique used to discretize in time produces only tridiagonal linear systems to be solved at each time level; thus, from the computational cost point of view, the method we propose is more efficient than other numerical algorithms which have been used for these problems. Numerical results for several test problems are shown, which corroborate in practice both the uniform convergence and the efficiency of the algorithm

    Solutions of fractional gas dynamics equation by a new technique

    Full text link
    [EN] In this paper, a novel technique is formed to obtain the solution of a fractional gas dynamics equation. Some reproducing kernel Hilbert spaces are defined. Reproducing kernel functions of these spaces have been found. Some numerical examples are shown to confirm the efficiency of the reproducing kernel Hilbert space method. The accurate pulchritude of the paper is arisen in its strong implementation of Caputo fractional order time derivative on the classical equations with the success of the highly accurate solutions by the series solutions. Reproducing kernel Hilbert space method is actually capable of reducing the size of the numerical work. Numerical results for different particular cases of the equations are given in the numerical section.This research was partially supported by Spanish Ministerio de Ciencia, Innovacion y Universidades PGC2018-095896-B-C22 and Generalitat Valenciana PROMETEO/2016/089.Akgül, A.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2020). Solutions of fractional gas dynamics equation by a new technique. Mathematical Methods in the Applied Sciences. 43(3):1349-1358. https://doi.org/10.1002/mma.5950S13491358433Singh, J., Kumar, D., & Kılıçman, A. (2013). Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform. Abstract and Applied Analysis, 2013, 1-8. doi:10.1155/2013/934060Momani, S. (2005). Analytic and approximate solutions of the space- and time-fractional telegraph equations. Applied Mathematics and Computation, 170(2), 1126-1134. doi:10.1016/j.amc.2005.01.009Hajipour, M., Jajarmi, A., Baleanu, D., & Sun, H. (2019). On an accurate discretization of a variable-order fractional reaction-diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 69, 119-133. doi:10.1016/j.cnsns.2018.09.004Meng, R., Yin, D., & Drapaca, C. S. (2019). Variable-order fractional description of compression deformation of amorphous glassy polymers. Computational Mechanics, 64(1), 163-171. doi:10.1007/s00466-018-1663-9Baleanu, D., Jajarmi, A., & Hajipour, M. (2018). On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel. Nonlinear Dynamics, 94(1), 397-414. doi:10.1007/s11071-018-4367-yJajarmi, A., & Baleanu, D. (2018). A new fractional analysis on the interaction of HIV withCD4+T-cells. Chaos, Solitons & Fractals, 113, 221-229. doi:10.1016/j.chaos.2018.06.009Baleanu, D., Jajarmi, A., Bonyah, E., & Hajipour, M. (2018). New aspects of poor nutrition in the life cycle within the fractional calculus. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1684-xJajarmi, A., & Baleanu, D. (2017). Suboptimal control of fractional-order dynamic systems with delay argument. Journal of Vibration and Control, 24(12), 2430-2446. doi:10.1177/1077546316687936Singh, J., Kumar, D., & Baleanu, D. (2018). On the analysis of fractional diabetes model with exponential law. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1680-1Kumar, D., Singh, J., Tanwar, K., & Baleanu, D. (2019). A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. International Journal of Heat and Mass Transfer, 138, 1222-1227. doi:10.1016/j.ijheatmasstransfer.2019.04.094Kumar, D., Singh, J., Al Qurashi, M., & Baleanu, D. (2019). A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Advances in Difference Equations, 2019(1). doi:10.1186/s13662-019-2199-9Kumar, D., Singh, J., Purohit, S. D., & Swroop, R. (2019). A hybrid analytical algorithm for nonlinear fractional wave-like equations. Mathematical Modelling of Natural Phenomena, 14(3), 304. doi:10.1051/mmnp/2018063Kumar, D., Tchier, F., Singh, J., & Baleanu, D. (2018). An Efficient Computational Technique for Fractal Vehicular Traffic Flow. Entropy, 20(4), 259. doi:10.3390/e20040259Goswami, A., Singh, J., Kumar, D., & Sushila. (2019). An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A: Statistical Mechanics and its Applications, 524, 563-575. doi:10.1016/j.physa.2019.04.058Mohyud-Din, S. T., Bibi, S., Ahmed, N., & Khan, U. (2018). Some exact solutions of the nonlinear space–time fractional differential equations. Waves in Random and Complex Media, 29(4), 645-664. doi:10.1080/17455030.2018.1462541Momani, S., & Shawagfeh, N. (2006). Decomposition method for solving fractional Riccati differential equations. Applied Mathematics and Computation, 182(2), 1083-1092. doi:10.1016/j.amc.2006.05.008Hashim, I., Abdulaziz, O., & Momani, S. (2009). Homotopy analysis method for fractional IVPs. Communications in Nonlinear Science and Numerical Simulation, 14(3), 674-684. doi:10.1016/j.cnsns.2007.09.014Yıldırım, A. (2010). He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations. International Journal of Computer Mathematics, 87(13), 2998-3006. doi:10.1080/00207160902874653Momani, S., & Odibat, Z. (2007). Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons & Fractals, 31(5), 1248-1255. doi:10.1016/j.chaos.2005.10.068Rida, S. Z., El-Sayed, A. M. A., & Arafa, A. A. M. (2010). On the solutions of time-fractional reaction–diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 15(12), 3847-3854. doi:10.1016/j.cnsns.2010.02.007Machado, J. A. T., & Mata, M. E. (2014). A fractional perspective to the bond graph modelling of world economies. Nonlinear Dynamics, 80(4), 1839-1852. doi:10.1007/s11071-014-1334-0Raja Balachandar, S., Krishnaveni, K., Kannan, K., & Venkatesh, S. G. (2018). Analytical Solution for Fractional Gas Dynamics Equation. National Academy Science Letters, 42(1), 51-57. doi:10.1007/s40009-018-0662-xWang, Y.-L., Liu, Y., Li, Z., & zhang, H. (2018). Numerical solution of integro-differential equations of high-order Fredholm by the simplified reproducing kernel method. International Journal of Computer Mathematics, 96(3), 585-593. doi:10.1080/00207160.2018.1455091Gumah, G. N., Naser, M. F. M., Al-Smadi, M., & Al-Omari, S. K. (2018). Application of reproducing kernel Hilbert space method for solving second-order fuzzy Volterra integro-differential equations. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1937-8Al-Smadi, M. (2018). Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Engineering Journal, 9(4), 2517-2525. doi:10.1016/j.asej.2017.04.006Kashkari, B. S. H., & Syam, M. I. (2018). Reproducing Kernel Method for Solving Nonlinear Fractional Fredholm Integrodifferential Equation. Complexity, 2018, 1-7. doi:10.1155/2018/2304858Akgül, A., & Grow, D. (2019). Existence of Unique Solutions to the Telegraph Equation in Binary Reproducing Kernel Hilbert Spaces. Differential Equations and Dynamical Systems, 28(3), 715-744. doi:10.1007/s12591-019-00453-3Akgül, A., Khan, Y., Akgül, E. K., Baleanu, D., & Al Qurashi, M. M. (2017). Solutions of nonlinear systems by reproducing kernel method. The Journal of Nonlinear Sciences and Applications, 10(08), 4408-4417. doi:10.22436/jnsa.010.08.33Karatas Akgül, E. (2018). Reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8(2), 145-151. doi:10.11121/ijocta.01.2018.00568Akgül, A., Inc, M., & Karatas, E. (2015). Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 8(6), 1055-1064. doi:10.3934/dcdss.2015.8.1055Akgül, A., Inc, M., Karatas, E., & Baleanu, D. (2015). Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique. Advances in Difference Equations, 2015(1). doi:10.1186/s13662-015-0558-8Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3), 337-337. doi:10.1090/s0002-9947-1950-0051437-7Bergman, S. (1950). The Kernel Function and Conformal Mapping. Mathematical Surveys and Monographs. doi:10.1090/surv/005Inc, M., & Akgül, A. (2014). Approximate solutions for MHD squeezing fluid flow by a novel method. Boundary Value Problems, 2014(1). doi:10.1186/1687-2770-2014-18Inc, M., Akgül, A., & Geng, F. (2014). Reproducing Kernel Hilbert Space Method for Solving Bratu’s Problem. Bulletin of the Malaysian Mathematical Sciences Society, 38(1), 271-287. doi:10.1007/s40840-014-0018-8Wang, Y., & Chao, L. (2008). Using reproducing kernel for solving a class of partial differential equation with variable-coefficients. Applied Mathematics and Mechanics, 29(1), 129-137. doi:10.1007/s10483-008-0115-yWu, B. Y., & Li, X. Y. (2011). A new algorithm for a class of linear nonlocal boundary value problems based on the reproducing kernel method. Applied Mathematics Letters, 24(2), 156-159. doi:10.1016/j.aml.2010.08.036Yao, H., & Lin, Y. (2009). Solving singular boundary-value problems of higher even-order. Journal of Computational and Applied Mathematics, 223(2), 703-713. doi:10.1016/j.cam.2008.02.01

    Fourier spectral methods for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is computationally demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reactiondiffusion equations. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is show-cased by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models,together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator

    Efficient preconditioning of the method of lines for solving nonlinear two-sided space-fractional diffusion equations

    Get PDF
    A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach

    An efficient implementation of an implicit FEM scheme for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a modelling tool for processes with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time fractional) or nonlocality (space fractional) issues, which impose a number of computational constraints. In this paper we develop efficient, scalable techniques for solving fractional-in-space reaction diffusion equations using the finite element method on both structured and unstructured grids, and robust techniques for computing the fractional power of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional Allen-Cahn reaction-diffusion equations in two and three spatial dimensions, and analysing the speed of the travelling wave and size of the interface in terms of the fractional power of the underlying Laplacian operator
    • …
    corecore