1,754 research outputs found

    Wireless Efficiency Versus Net Neutrality

    Get PDF
    Symposium: Rough Consensus and Running Code: Integrating Engineering Principles into Internet Policy Debates, held at the University of Pennsylvania\u27s Center for Technology Innovation and Competition on May 6-7, 2010. This Article first addresses congestion and congestion control in the Internet. It shows how congestion control has always depended upon altruistic behavior by end users. Equipment failures, malicious acts, or abandonment of altruistic behavior can lead to severe congestion within the Internet. Consumers benefit when network operators are able to control such congestion. One tool for controlling such congestion is giving higher priority to some applications, such as telephone calls, and giving lower priority or blocking other applications, such as file sharing. The Article then turns to wireless networks and shows that in addition to congestion issues, priority routing in wireless can make available capacity that would otherwise go unused. Wireless systems that are aware of the application being carried in each packet can deliver more value to consumers than can dumb networks that treat all packets identically. Handsets are both complements to and substitutes for the network infrastructure of wireless networks and any analysis of handset bundling should consider this complementarity. Next, the Article reviews analogous issues in electrical power and satellite communications and shows how various forms of priority are used to increase the total value delivered to consumers by these systems. Finally, the Article observes that regulations that prohibit priority routing of packets and flows on the Internet will create incentives to operate multiple networks

    Bandwidth allocation in cooperative wireless networks: Buffer load analysis and fairness evaluation.

    Get PDF
    In modern cooperative wireless networks, the resource allocation is an issue of major significance. The cooperation of source and relay nodes in wireless networks towards improved performance and robustness requires the application of an efficient bandwidth sharing policy. Moreover, user requirements for multimedia content over wireless links necessitate the support of advanced Quality of Service (QoS) features. In this paper, a novel bandwidth allocation technique for cooperative wireless networks is proposed, which is able to satisfy the increased QoS requirements of network users taking into account both traffic priority and packet buffer load. The performance of the proposed scheme is examined by analyzing the impact of buffer load on bandwidth allocation. Moreover, fairness performance in resource sharing is also studied. The results obtained for the cooperative network scenario employed, are validated by simulations. Evidently, the improved performance achieved by the proposed technique indicates that it can be employed for efficient traffic differentiation. The flexible design architecture of the proposed technique indicates its capability to be integrated into Medium Access Control (MAC) protocols for cooperative wireless networks

    MAC design for WiFi infrastructure networks: a game-theoretic approach

    Full text link
    In WiFi networks, mobile nodes compete for accessing a shared channel by means of a random access protocol called Distributed Coordination Function (DCF). Although this protocol is in principle fair, since all the stations have the same probability to transmit on the channel, it has been shown that unfair behaviors may emerge in actual networking scenarios because of non-standard configurations of the nodes. Due to the proliferation of open source drivers and programmable cards, enabling an easy customization of the channel access policies, we propose a game-theoretic analysis of random access schemes. Assuming that each node is rational and implements a best response strategy, we show that efficient equilibria conditions can be reached when stations are interested in both uploading and downloading traffic. More interesting, these equilibria are reached when all the stations play the same strategy, thus guaranteeing a fair resource sharing. When stations are interested in upload traffic only, we also propose a mechanism design, based on an artificial dropping of layer-2 acknowledgments, to force desired equilibria. Finally, we propose and evaluate some simple DCF extensions for practically implementing our theoretical findings.Comment: under review on IEEE Transaction on wireless communication
    corecore