438 research outputs found

    Control Charts With Estimated Process Parameters And A Proposed Coefficient Of Variation Chart

    Get PDF
    Carta kawalan menerima perhatian besar dalam Kawalan Proses Berstatistik (SPC) sebagai alat yang paling berguna dalam pengesanan anjakan proses supaya tindakan pembetulan boleh diambil untuk mengenal pasti dan menyingkirkan sebab-sebab terumpukkan yang hadir. Objektif utama penyelidikan ini adalah untuk menangani masalah anggaran parameter proses bagi carta larian kumpulan dengan kepekaan sisi (carta SSGR) dan carta pensampelan ganda dua sintetik (carta SDS). Kebanyakan carta kawalan memerlukan andaian bahawa nilai sasaran parameter proses dalam kawalan, iaitu min dan sisihan piawai adalah diketahui untuk pengiraan had-had kawalan serta statistik carta kawalan. Malangnya, parameter proses lazimnya tidak diketahui dalam keadaan sebenar, yang mana nilainya dianggarkan daripada set data Fasa-I dalam kawalan. Dalam penyelidikan ini, prestasi carta-carta SSGR dan SDS dengan parameter proses yang dianggarkan dibandingkan dengan prestasi carta-carta yang sepadan apabila parameter proses diketahui. Control charts receive great attention in Statistical Process Control (SPC) as the most useful tool in detecting process shifts so that corrective actions can be taken to identify and eliminate the assignable causes that are present. The main objective of this research is to address the problems of estimation of process parameters for the side sensitive group runs (SSGR) chart and synthetic double sampling (SDS) chart. Most control charts require the assumption that the target values of the in-control process parameters, i.e. the mean and standard deviation are known for the computation of the control charts’ control limits and statistics. Unfortunately, process parameters are usually unknown in real situations, where they are estimated from an in-control Phase-I dataset. In this research, the performances of the SSGR and SDS charts with estimated process parameters are compared with that of their known process parameters counterparts

    New Variable Sampling Interval Run Sum Standard Deviation And Run Sum Multivariate Coefficient Of Variation Charts

    Get PDF
    In Statistical Process Control (SPC), the control charting technique is an effective method to solve quality issues in manufacturing and service industries. The R and S charts are commonly used to monitor the process variance in industries due to the charts’ simplicity and high sensitivity toward large shifts. However, these charts are not sensitive toward small and moderate shifts in the process variance. On the other hand, the more sophisticated charts, such as the exponentially weighted moving average (EWMA) S chart and the cumulative sum (CUSUM) S chart are very effective in detecting small changes in the process variance. However, most quality practitioners do not adopt these charts in real applications due to their design complexity. In view of this setback, the variable sampling interval (VSI) approach is incorporated into the run sum (RS) S chart, in order to suggest an effective, yet a simple chart, for detecting small, moderate and large shifts in the process variance. Apart from that, the coefficient of variation (CV) is an important quality characteristic to take into account when the process mean and standard deviation are not constant, even though the process is in-control

    Extensions Of Multivariate Coefficient Of Variation Control Charts

    Get PDF
    Control charts for monitoring multivariate coefficient of variation (MCV) are applied when the interest is in monitoring the relative multivariate variability to the mean vector of a multivariate process. This thesis proposes an upper-sided variable sampling interval (VSI) exponentially weighted moving average (EWMA) chart to detect upward shifts in the MCV squared

    The Revised M-Of -K Runs Rules Based On Median Run Length

    Get PDF
    Petua larian digunakan untuk meningkatkan kepekaan carta kawalan X Shewhart dalam pengesanan anjakan min proses yang kecil dan sederhana. Runs rules are used to increase the sensitivity of the Shewhart X control chart in detecting small and moderate process mean shifts

    Integrated Projection and Regression Models for Monitoring Multivariate Autocorrelated Cascade Processes

    Get PDF
    This dissertation presents a comprehensive methodology of dual monitoring for the multivariate autocorrelated cascade processes using principal component analysis and regression. Principle Components Analysis is used to alleviate the multicollinearity among input process variables and reduce the dimension of the variables. An integrated principal components selection rule is proposed to reduce the number of input variables. An autoregressive time series model is used and imposed on the time correlated output variable which depends on many multicorrelated process input variables. A generalized least squares principal component regression is used to describe the relationship between product and process variables under the autoregressive regression error model. The combined residual based EWMA control chart, applied to the product characteristics, and the MEWMA control charts applied to the multivariate autocorrelated cascade process characteristics, are proposed. The dual EWMA and MEWMA control chart has advantage and capability over the conventional residual type control chart applied to the residuals of the principal component regression by monitoring both product and the process characteristics simultaneously. The EWMA control chart is used to increase the detection performance, especially in the case of small mean shifts. The MEWMA is applied to the selected set of variables from the first principal component with the aim of increasing the sensitivity in detecting process failures. The dual implementation control chart for product and process characteristics enhances both the detection and the prediction performance of the monitoring system of the multivariate autocorrelated cascade processes. The proposed methodology is demonstrated through an example of the sugar-beet pulp drying process. A general guideline for controlling multivariate autocorrelated processes is also developed

    Latent Structures based-Multivariate Statistical Process Control: a paradigm shift

    Full text link
    The basic fundamentals of statistical process control (SPC) were proposed by Walter Shewhart for data-starved production environments typical in the 1920s and 1930s. In the 21st century, the traditional scarcity of data has given way to a data-rich environment typical of highly automated and computerized modern processes. These data often exhibit high correlation, rank deficiency, low signal-to-noise ratio, multistage and multiway structures, and missing values. Conventional univariate and multivariate SPC techniques are not suitable in these environments. This article discusses the paradigm shift to which those working in the quality improvement field should pay keen attention. We advocate the use of latent structure based multivariate statistical process control methods as efficient quality improvement tools in these massive data contexts. This is a strategic issue for industrial success in the tremendously competitive global market.This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02.Ferrer, A. (2014). Latent Structures based-Multivariate Statistical Process Control: a paradigm shift. Quality Engineering. 26(1):72-91. https://doi.org/10.1080/08982112.2013.846093S7291261Aparisi, F., Jabaioyes, J., & Carrion, A. (1999). Statistical properties of the lsi multivariate control chart. Communications in Statistics - Theory and Methods, 28(11), 2671-2686. doi:10.1080/03610929908832445Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517-543. doi:10.1002/qre.829Bharati, M. H., & MacGregor, J. F. (1998). Multivariate Image Analysis for Real-Time Process Monitoring and Control. Industrial & Engineering Chemistry Research, 37(12), 4715-4724. doi:10.1021/ie980334lBharati, M. H., MacGregor, J. F., & Tropper, W. (2003). Softwood Lumber Grading through On-line Multivariate Image Analysis Techniques. Industrial & Engineering Chemistry Research, 42(21), 5345-5353. doi:10.1021/ie0210560Bisgaard, S. (2012). The Future of Quality Technology: From a Manufacturing to a Knowledge Economy & From Defects to Innovations. Quality Engineering, 24(1), 30-36. doi:10.1080/08982112.2011.627010Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification. The Annals of Mathematical Statistics, 25(2), 290-302. doi:10.1214/aoms/1177728786Camacho, J., & Ferrer, A. (2012). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects. Journal of Chemometrics, 26(7), 361-373. doi:10.1002/cem.2440Duchesne, C., Liu, J. J., & MacGregor, J. F. (2012). Multivariate image analysis in the process industries: A review. Chemometrics and Intelligent Laboratory Systems, 117, 116-128. doi:10.1016/j.chemolab.2012.04.003Efron, B., & Gong, G. (1983). A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. The American Statistician, 37(1), 36-48. doi:10.1080/00031305.1983.10483087Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304Fuchs, C. (1998). Multivariate Quality Control. doi:10.1201/9781482273731Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9Helland, I. S. (1988). On the structure of partial least squares regression. Communications in Statistics - Simulation and Computation, 17(2), 581-607. doi:10.1080/03610918808812681Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics, 2(3), 211-228. doi:10.1002/cem.1180020306Hunter, J. S. (1986). The Exponentially Weighted Moving Average. Journal of Quality Technology, 18(4), 203-210. doi:10.1080/00224065.1986.11979014Edward Jackson, J. (1985). Multivariate quality control. Communications in Statistics - Theory and Methods, 14(11), 2657-2688. doi:10.1080/03610928508829069Jackson, J. E., & Mudholkar, G. S. (1979). Control Procedures for Residuals Associated With Principal Component Analysis. Technometrics, 21(3), 341-349. doi:10.1080/00401706.1979.10489779Process analysis and abnormal situation detection: from theory to practice. (2002). IEEE Control Systems, 22(5), 10-25. doi:10.1109/mcs.2002.1035214Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing, 19(4), 213-246. doi:10.1002/acs.859Kourti, T. (2006). Process Analytical Technology Beyond Real-Time Analyzers: The Role of Multivariate Analysis. Critical Reviews in Analytical Chemistry, 36(3-4), 257-278. doi:10.1080/10408340600969957Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699Liu, R. Y. (1995). Control Charts for Multivariate Processes. Journal of the American Statistical Association, 90(432), 1380-1387. doi:10.1080/01621459.1995.10476643Liu, R. Y., Singh, K., & Teng*, J. H. (2004). DDMA-charts: Nonparametric multivariate moving average control charts based on data depth. Allgemeines Statistisches Archiv, 88(2), 235-258. doi:10.1007/s101820400170Liu, R. Y., & Tang, J. (1996). Control Charts for Dependent and Independent Measurements Based on Bootstrap Methods. Journal of the American Statistical Association, 91(436), 1694-1700. doi:10.1080/01621459.1996.10476740LOWRY, C. A., & MONTGOMERY, D. C. (1995). A review of multivariate control charts. IIE Transactions, 27(6), 800-810. doi:10.1080/07408179508936797MacGregor, J. F. (1997). Using On-Line Process Data to Improve Quality: Challenges for Statisticians. International Statistical Review, 65(3), 309-323. doi:10.1111/j.1751-5823.1997.tb00311.xMason, R. L., Champ, C. W., Tracy, N. D., Wierda, S. J., & Young, J. C. (1997). Assessment of Multivariate Process Control Techniques. Journal of Quality Technology, 29(2), 140-143. doi:10.1080/00224065.1997.11979743Montgomery, D. C., & Woodall, W. H. (1997). A Discussion on Statistically-Based Process Monitoring and Control. Journal of Quality Technology, 29(2), 121-121. doi:10.1080/00224065.1997.11979738Nelson, P. R. C., Taylor, P. A., & MacGregor, J. F. (1996). Missing data methods in PCA and PLS: Score calculations with incomplete observations. Chemometrics and Intelligent Laboratory Systems, 35(1), 45-65. doi:10.1016/s0169-7439(96)00007-xNomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. doi:10.1016/j.chemolab.2011.03.002Prats-Montalbán, J. M., Ferrer, A., Malo, J. L., & Gorbeña, J. (2006). A comparison of different discriminant analysis techniques in a steel industry welding process. Chemometrics and Intelligent Laboratory Systems, 80(1), 109-119. doi:10.1016/j.chemolab.2005.08.005Prats-Montalbán, J. M., & Ferrer, A. (2007). Integration of colour and textural information in multivariate image analysis: defect detection and classification issues. Journal of Chemometrics, 21(1-2), 10-23. doi:10.1002/cem.1026Bisgaard, S., Doganaksoy, N., Fisher, N., Gunter, B., Hahn, G., Keller-McNulty, S., … Wu, C. F. J. (2008). The Future of Industrial Statistics: A Panel Discussion. Technometrics, 50(2), 103-127. doi:10.1198/004017008000000136Stoumbos, Z. G., Reynolds, M. R., Ryan, T. P., & Woodall, W. H. (2000). The State of Statistical Process Control as We Proceed into the 21st Century. Journal of the American Statistical Association, 95(451), 992-998. doi:10.1080/01621459.2000.10474292Tracy, N. D., Young, J. C., & Mason, R. L. (1992). Multivariate Control Charts for Individual Observations. Journal of Quality Technology, 24(2), 88-95. doi:10.1080/00224065.1992.12015232Wierda, S. J. (1994). Multivariate statistical process control—recent results and directions for future research. Statistica Neerlandica, 48(2), 147-168. doi:10.1111/j.1467-9574.1994.tb01439.xWold, S. (1978). Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics, 20(4), 397-405. doi:10.1080/00401706.1978.10489693Woodall, W. H. (2000). Controversies and Contradictions in Statistical Process Control. Journal of Quality Technology, 32(4), 341-350. doi:10.1080/00224065.2000.11980013Woodall, W. H., & Montgomery, D. C. (1999). Research Issues and Ideas in Statistical Process Control. Journal of Quality Technology, 31(4), 376-386. doi:10.1080/00224065.1999.11979944Yu, H., & MacGregor, J. F. (2003). Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemometrics and Intelligent Laboratory Systems, 67(2), 125-144. doi:10.1016/s0169-7439(03)00065-0Yu, H., MacGregor, J. F., Haarsma, G., & Bourg, W. (2003). Digital Imaging for Online Monitoring and Control of Industrial Snack Food Processes. Industrial & Engineering Chemistry Research, 42(13), 3036-3044. doi:10.1021/ie020941
    corecore