27,181 research outputs found

    Composite Correlation Quantization for Efficient Multimodal Retrieval

    Full text link
    Efficient similarity retrieval from large-scale multimodal database is pervasive in modern search engines and social networks. To support queries across content modalities, the system should enable cross-modal correlation and computation-efficient indexing. While hashing methods have shown great potential in achieving this goal, current attempts generally fail to learn isomorphic hash codes in a seamless scheme, that is, they embed multiple modalities in a continuous isomorphic space and separately threshold embeddings into binary codes, which incurs substantial loss of retrieval accuracy. In this paper, we approach seamless multimodal hashing by proposing a novel Composite Correlation Quantization (CCQ) model. Specifically, CCQ jointly finds correlation-maximal mappings that transform different modalities into isomorphic latent space, and learns composite quantizers that convert the isomorphic latent features into compact binary codes. An optimization framework is devised to preserve both intra-modal similarity and inter-modal correlation through minimizing both reconstruction and quantization errors, which can be trained from both paired and partially paired data in linear time. A comprehensive set of experiments clearly show the superior effectiveness and efficiency of CCQ against the state of the art hashing methods for both unimodal and cross-modal retrieval

    Effective and Efficient Data Access in the Versatile Web Query Language Xcerpt

    Get PDF
    Access to Web data has become an integral part of many applications and services. In the past, such data has usually been accessed through human-tailoredHTMLinterfaces.Nowadays, rich client interfaces in desktop applications or, increasingly, in browser-based clients ease data access and allow more complex client processing based on XML or RDF data retrieved throughWeb service interfaces. Convenient specifications of the data processing on the client and flexible, expressive service interfaces for data access become essential in this context.Web query languages such as XQuery, XSLT, SPARQL, or Xcerpt have been tailored specifically for such a setting: declarative and efficient access and processing ofWeb data. Xcerpt stands apart among these languages by its versatility, i.e., its ability to access not just oneWeb format but many. In this demonstration, two aspects of Xcerpt are illustrated in detail: The first part of the demonstration focuses on Xcerpt’s pattern matching constructs and rules to enable effective and versatile data access. It uses a concrete practical use case from bibliography management to illustrate these language features. Xcerpt’s visual companion language visXcerpt is used to provide an intuitive interface to both data and queries. The second part of the demonstration shows recent advancements in Xcerpt’s implementation focusing on experimental evaluation of recent complexity results and optimization techniques, as well as scalability over a number of usage scenarios and input sizes

    Simple to Complex Cross-modal Learning to Rank

    Get PDF
    The heterogeneity-gap between different modalities brings a significant challenge to multimedia information retrieval. Some studies formalize the cross-modal retrieval tasks as a ranking problem and learn a shared multi-modal embedding space to measure the cross-modality similarity. However, previous methods often establish the shared embedding space based on linear mapping functions which might not be sophisticated enough to reveal more complicated inter-modal correspondences. Additionally, current studies assume that the rankings are of equal importance, and thus all rankings are used simultaneously, or a small number of rankings are selected randomly to train the embedding space at each iteration. Such strategies, however, always suffer from outliers as well as reduced generalization capability due to their lack of insightful understanding of procedure of human cognition. In this paper, we involve the self-paced learning theory with diversity into the cross-modal learning to rank and learn an optimal multi-modal embedding space based on non-linear mapping functions. This strategy enhances the model's robustness to outliers and achieves better generalization via training the model gradually from easy rankings by diverse queries to more complex ones. An efficient alternative algorithm is exploited to solve the proposed challenging problem with fast convergence in practice. Extensive experimental results on several benchmark datasets indicate that the proposed method achieves significant improvements over the state-of-the-arts in this literature.Comment: 14 pages; Accepted by Computer Vision and Image Understandin
    corecore