179 research outputs found

    An Efficient Seismic Data Acquisition Based on Compressed Sensing Architecture with Generative Adversarial Networks

    Full text link
    © 2013 IEEE. Recently, large scale seismic data acquisition has been a critical method for scientific research and industrial production. However, due to the bottleneck on data transmission and the limitation of energy storage, it is hard to conduct large seismic data acquisition in a real-time way. So, in this paper, an efficient seismic data acquisition method, namely, compressed sensing architecture with generative adversarial networks (CSA-GAN), is proposed to tackle the two restrictions of collecting large scale seismic data. In the CSA-GAN, a data collection architecture based on compressed sensing theory is applied to reduce data traffic load of the whole system, as well as balance the data transmission. To make the compressed sensing procedure perform well in both data quality and compression ratio, a kind of generative adversarial networks is designed to learn the recovering map. According to our experiment results, a high data quality (about 30 dB) at the compression ratio of 16 is achieved by the proposed approach, which enables the system to afford 15 times more sensors and reduces the energy cost by means of data collection from N(N + 1)/2 to N2/16. These results show that the CSA-GAN can afford more sensors with the same bandwidth and consume less energy, via improving the efficiency seismic data acquisition

    Generative adversarial networks review in earthquake-related engineering fields

    Get PDF
    Within seismology, geology, civil and structural engineering, deep learning (DL), especially via generative adversarial networks (GANs), represents an innovative, engaging, and advantageous way to generate reliable synthetic data that represent actual samples' characteristics, providing a handy data augmentation tool. Indeed, in many practical applications, obtaining a significant number of high-quality information is demanding. Data augmentation is generally based on artificial intelligence (AI) and machine learning data-driven models. The DL GAN-based data augmentation approach for generating synthetic seismic signals revolutionized the current data augmentation paradigm. This study delivers a critical state-of-art review, explaining recent research into AI-based GAN synthetic generation of ground motion signals or seismic events, and also with a comprehensive insight into seismic-related geophysical studies. This study may be relevant, especially for the earth and planetary science, geology and seismology, oil and gas exploration, and on the other hand for assessing the seismic response of buildings and infrastructures, seismic detection tasks, and general structural and civil engineering applications. Furthermore, highlighting the strengths and limitations of the current studies on adversarial learning applied to seismology may help to guide research efforts in the next future toward the most promising directions

    Conditional Injective Flows for Bayesian Imaging

    Full text link
    Most deep learning models for computational imaging regress a single reconstructed image. In practice, however, ill-posedness, nonlinearity, model mismatch, and noise often conspire to make such point estimates misleading or insufficient. The Bayesian approach models images and (noisy) measurements as jointly distributed random vectors and aims to approximate the posterior distribution of unknowns. Recent variational inference methods based on conditional normalizing flows are a promising alternative to traditional MCMC methods, but they come with drawbacks: excessive memory and compute demands for moderate to high resolution images and underwhelming performance on hard nonlinear problems. In this work, we propose C-Trumpets -- conditional injective flows specifically designed for imaging problems, which greatly diminish these challenges. Injectivity reduces memory footprint and training time while low-dimensional latent space together with architectural innovations like fixed-volume-change layers and skip-connection revnet layers, C-Trumpets outperform regular conditional flow models on a variety of imaging and image restoration tasks, including limited-view CT and nonlinear inverse scattering, with a lower compute and memory budget. C-Trumpets enable fast approximation of point estimates like MMSE or MAP as well as physically-meaningful uncertainty quantification.Comment: 23 pages, 23 figure

    Generative Models for Inverse Imaging Problems

    Get PDF

    AmbientFlow: Invertible generative models from incomplete, noisy measurements

    Full text link
    Generative models have gained popularity for their potential applications in imaging science, such as image reconstruction, posterior sampling and data sharing. Flow-based generative models are particularly attractive due to their ability to tractably provide exact density estimates along with fast, inexpensive and diverse samples. Training such models, however, requires a large, high quality dataset of objects. In applications such as computed imaging, it is often difficult to acquire such data due to requirements such as long acquisition time or high radiation dose, while acquiring noisy or partially observed measurements of these objects is more feasible. In this work, we propose AmbientFlow, a framework for learning flow-based generative models directly from noisy and incomplete data. Using variational Bayesian methods, a novel framework for establishing flow-based generative models from noisy, incomplete data is proposed. Extensive numerical studies demonstrate the effectiveness of AmbientFlow in correctly learning the object distribution. The utility of AmbientFlow in a downstream inference task of image reconstruction is demonstrated

    Deep generative models for solving geophysical inverse problems

    Get PDF
    My thesis presents several novel methods to facilitate solving large-scale inverse problems by utilizing recent advances in machine learning, and particularly deep generative modeling. Inverse problems involve reliably estimating unknown parameters of a physical model from indirect observed data that are noisy. Solving inverse problems presents primarily two challenges. The first challenge is to capture and incorporate prior knowledge into ill-posed inverse problems whose solutions cannot be uniquely identified. The second challenge is the computational complexity of solving inverse problems, particularly the cost of quantifying uncertainty. The main goal of this thesis is to address these issues by developing practical data-driven methods that are scalable to geophysical applications in which access to high-quality training data is often limited. There are six papers included in this thesis. A majority of these papers focus on addressing computational challenges associated with Bayesian inference and uncertainty quantification, while others focus on developing regularization techniques to improve inverse problem solution quality and accelerate the solution process. These papers demonstrate the applicability of the proposed methods to seismic imaging, a large-scale geophysical inverse problem with a computationally expensive forward operator for which sufficiently capturing the variability in the Earth's heterogeneous subsurface through a training dataset is challenging. The first two papers present computationally feasible methods of applying a class of methods commonly referred to as deep priors to seismic imaging and uncertainty quantification. I also present a systematic Bayesian approach to translate uncertainty in seismic imaging to uncertainty in downstream tasks performed on the image. The next two papers aim to address the reliability concerns surrounding data-driven methods for solving Bayesian inverse problems by leveraging variational inference formulations that offer the benefits of fully-learned posteriors while being directly informed by physics and data. The last two papers are concerned with correcting forward modeling errors where the first proposes an adversarially learned postprocessing step to attenuate numerical dispersion artifacts in wave-equation simulations due to coarse finite-difference discretizations, while the second trains a Fourier neural operator surrogate forward model in order to accelerate the qualification of uncertainty due to errors in the forward model parameterization.Ph.D
    • …
    corecore