8,947 research outputs found

    Space-Efficient Predictive Block Management

    Get PDF
    With growing disk and storage capacities, the amount of required metadata for tracking all blocks in a system becomes a daunting task by itself. In previous work, we have demonstrated a system software effort in the area of predictive data grouping for reducing power and latency on hard disks. The structures used, very similar to prior efforts in prefetching and prefetch caching, track access successor information at the block level, keeping a fixed number of immediate successors per block. While providing powerful predictive expansion capabilities and being more space efficient in the amount of required metadata than many previous strategies, there remains a growing concern of how much data is actually required. In this paper, we present a novel method of storing equivalent information, SESH, a Space Efficient Storage of Heredity. This method utilizes the high amount of block-level predictability observed in a number of workload trace sets to reduce the overall metadata storage by up to 99% without any loss of information. As a result, we are able to provide a predictive tool that is adaptive, accurate, and robust in the face of workload noise, for a tiny fraction of the metadata cost previously anticipated; in some cases, reducing the required size from 12 gigabytes to less than 150 megabytes

    Pregelix: Big(ger) Graph Analytics on A Dataflow Engine

    Full text link
    There is a growing need for distributed graph processing systems that are capable of gracefully scaling to very large graph datasets. Unfortunately, this challenge has not been easily met due to the intense memory pressure imposed by process-centric, message passing designs that many graph processing systems follow. Pregelix is a new open source distributed graph processing system that is based on an iterative dataflow design that is better tuned to handle both in-memory and out-of-core workloads. As such, Pregelix offers improved performance characteristics and scaling properties over current open source systems (e.g., we have seen up to 15x speedup compared to Apache Giraph and up to 35x speedup compared to distributed GraphLab), and makes more effective use of available machine resources to support Big(ger) Graph Analytics

    Scalable big data systems: Architectures and optimizations

    Get PDF
    Big data analytics has become not just a popular buzzword but also a strategic direction in information technology for many enterprises and government organizations. Even though many new computing and storage systems have been developed for big data analytics, scalable big data processing has become more and more challenging as a result of the huge and rapidly growing size of real-world data. Dedicated to the development of architectures and optimization techniques for scaling big data processing systems, especially in the era of cloud computing, this dissertation makes three unique contributions. First, it introduces a suite of graph partitioning algorithms that can run much faster than existing data distribution methods and inherently scale to the growth of big data. The main idea of these approaches is to partition a big graph by preserving the core computational data structure as much as possible to maximize intra-server computation and minimize inter-server communication. In addition, it proposes a distributed iterative graph computation framework that effectively utilizes secondary storage to maximize access locality and speed up distributed iterative graph computations. The framework not only considerably reduces memory requirements for iterative graph algorithms but also significantly improves the performance of iterative graph computations. Last but not the least, it establishes a suite of optimization techniques for scalable spatial data processing along with three orthogonal dimensions: (i) scalable processing of spatial alarms for mobile users traveling on road networks, (ii) scalable location tagging for improving the quality of Twitter data analytics and prediction accuracy, and (iii) lightweight spatial indexing for enhancing the performance of big spatial data queries.Ph.D

    Formal Representation of the SS-DB Benchmark and Experimental Evaluation in EXTASCID

    Full text link
    Evaluating the performance of scientific data processing systems is a difficult task considering the plethora of application-specific solutions available in this landscape and the lack of a generally-accepted benchmark. The dual structure of scientific data coupled with the complex nature of processing complicate the evaluation procedure further. SS-DB is the first attempt to define a general benchmark for complex scientific processing over raw and derived data. It fails to draw sufficient attention though because of the ambiguous plain language specification and the extraordinary SciDB results. In this paper, we remedy the shortcomings of the original SS-DB specification by providing a formal representation in terms of ArrayQL algebra operators and ArrayQL/SciQL constructs. These are the first formal representations of the SS-DB benchmark. Starting from the formal representation, we give a reference implementation and present benchmark results in EXTASCID, a novel system for scientific data processing. EXTASCID is complete in providing native support both for array and relational data and extensible in executing any user code inside the system by the means of a configurable metaoperator. These features result in an order of magnitude improvement over SciDB at data loading, extracting derived data, and operations over derived data.Comment: 32 pages, 3 figure

    A survey and classification of storage deduplication systems

    Get PDF
    The automatic elimination of duplicate data in a storage system commonly known as deduplication is increasingly accepted as an effective technique to reduce storage costs. Thus, it has been applied to different storage types, including archives and backups, primary storage, within solid state disks, and even to random access memory. Although the general approach to deduplication is shared by all storage types, each poses specific challenges and leads to different trade-offs and solutions. This diversity is often misunderstood, thus underestimating the relevance of new research and development. The first contribution of this paper is a classification of deduplication systems according to six criteria that correspond to key design decisions: granularity, locality, timing, indexing, technique, and scope. This classification identifies and describes the different approaches used for each of them. As a second contribution, we describe which combinations of these design decisions have been proposed and found more useful for challenges in each storage type. Finally, outstanding research challenges and unexplored design points are identified and discussed.This work is funded by the European Regional Development Fund (EDRF) through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the Fundacao para a Ciencia e a Tecnologia (FCT; Portuguese Foundation for Science and Technology) within project RED FCOMP-01-0124-FEDER-010156 and the FCT by PhD scholarship SFRH-BD-71372-2010

    Scalable Integration View Computation and Maintenance with Parallel, Adaptive and Grouping Techniques

    Get PDF
    Materialized integration views constructed by integrating data from multiple distributed data sources help to achieve better access, reliable performance, and high availability for a wide range of applications. In this dissertation, we propose parallel, adaptive, and grouping techniques to address scalability challenges in high-performance integration view computation and maintenance due to increasingly large data sources and high rates of source updates. State-of-the-art parallel integration view computation makes the common assumption that the maximal pipelined parallelism leads to superior performance. We instead propose segmented bushy parallel processing that combines pipelined parallelism with alternate forms of parallelism to achieve an overall more effective strategy. Experimental studies conducted over a cluster of high-performance PCs confirm that the proposed strategy has an on average of 50\% improvement in terms of total processing time in comparison to existing solutions. Run-time adaptation becomes critical for parallel integration view computation due to its long running and memory intensive nature. We investigate two types of state level adaptations, namely, state spill and state relocation, to address the run-time memory shortage. We propose lazy-disk and active-disk approaches that integrate both adaptations to maximize run-time query throughput in a memory constrained environment. We also propose global throughput-oriented state adaptation strategies for computation plans with multiple state intensive operators. Extensive experiments confirm the effectiveness of our proposed adaptation solutions. Once results have been computed and materialized, it\u27s typically more efficient to maintain them incrementally instead of full recomputation. However, state-of-the-art incremental view maintenance require O(n2n^2) maintenance queries with n being the number of data sources that the view is defined upon. Moreover, they do not exploit view definitions and data source processing capabilities to further improve view maintenance performance. We propose novel grouping maintenance algorithms that dramatically reduce the number of maintenance queries to (O(n)). A cost-based view maintenance framework has been proposed to generate optimized maintenance plans tuned to particular environmental settings. Extensive experimental studies verify the effectiveness of our maintenance algorithms as well as the maintenance framework
    • …
    corecore