20,977 research outputs found

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    The EnTrak system : supporting energy action planning via the Internet

    Get PDF
    Recent energy policy is designed to foster better energy efficiency and assist with the deployment of clean energy systems, especially those derived from renewable energy sources. To attain the envisaged targets will require action at all levels and effective collaboration between disparate groups (e.g. policy makers, developers, local authorities, energy managers, building designers, consumers etc) impacting on energy and environment. To support such actions and collaborations, an Internet-enabled energy information system called 'EnTrak' was developed. The aim was to provide decision-makers with information on energy demands, supplies and impacts by sector, time, fuel type and so on, in support of energy action plan formulation and enactment. This paper describes the system structure and capabilities of the EnTrak system

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Integration of Legacy Appliances into Home Energy Management Systems

    Full text link
    The progressive installation of renewable energy sources requires the coordination of energy consuming devices. At consumer level, this coordination can be done by a home energy management system (HEMS). Interoperability issues need to be solved among smart appliances as well as between smart and non-smart, i.e., legacy devices. We expect current standardization efforts to soon provide technologies to design smart appliances in order to cope with the current interoperability issues. Nevertheless, common electrical devices affect energy consumption significantly and therefore deserve consideration within energy management applications. This paper discusses the integration of smart and legacy devices into a generic system architecture and, subsequently, elaborates the requirements and components which are necessary to realize such an architecture including an application of load detection for the identification of running loads and their integration into existing HEM systems. We assess the feasibility of such an approach with a case study based on a measurement campaign on real households. We show how the information of detected appliances can be extracted in order to create device profiles allowing for their integration and management within a HEMS

    Social issues of power harvesting as key enables of WSN in pervasive computing

    No full text
    Pervasive systems have gained popularity and open the door to new applications that will improve the quality of life of the users. Additionally, the implementation of such systems over an infrastructure of Wireless Sensor Networks has been proven to be very powerful. To deal with the WSN problems related to the battery of the elements or nodes that constitute the WSN, Power Harvesting techniques arise as good candidates. With PH each node can extract the energy from the surrounding environment. However, this energy source could not be constant, affecting the continuity and quality of the services provided. This behavior can have a negative impact on the user's perception about the system, which could be perceived as unreliable or faulty. In the current paper, some related works regarding pervasive systems within the home environment are referenced to extrapolate the conclusions and problems to the paradigm of Power Harvesting Pervasive Systems from the user perspective. Besides, the paper speculates about the approach and methods to overcome these potential problems and presents the design trends that could be followed.<br/
    • 

    corecore