64 research outputs found

    Performance of Relaying Protocols

    Get PDF
    In wireless systems, cooperative diversity and relaying can exploit the benefit of spatial diversity and combat heavy pathloss without requiring multiple antennas at the receivers and transmitters. For practical networks, the use of relays is motivated by the need for simple, inexpensive terminals with limited power and a single antenna. The motivation for this thesis is to study and propose practical relaying protocols that can reduce the power consumption and ameliorate the performance with minimum additional complexity. Based on a dual-hop communication model, we exploit two upper bounds for the end-to-end SNR. These bounds further inspire us to propose new relaying protocols for wireless communication systems. We examine the case of a single user and relay under Rayleigh and Nakagami-m fading conditions. Based on the general upper bound, a new protocol is introduced: Clipped gain. This protocol makes it possible to save the transmit power by stopping the transmission when the quality of the first hop leads to an outage. We consider also user selection and user scheduling for dual-hop communication with multiple users and relays over a Rayleigh fading channel. We introduce new scheduling protocols based on one-bit feedback information. To the best of our knowledge, most of the available literature uses full channel state information to perform user selection and user scheduling. Interestingly, our protocols based on one bit feedback greatly improve the system performance while adding less additional complexity. To carry out rigorous comparison, close-form expressions are derived and analytical results used to assess the outage probability performance

    Impact of CCI on performance analysis of downlink satellite-terrestrial systems: outage probability and ergodic capacity perspective

    Get PDF
    The evolution of non-orthogonal multiple access (NOMA) has raised many opportunities for massive connectivity with less latency in signal transmissions at great distances. We aim to integrate NOMA with a satellite communications network to evaluate system performance under the impacts of imperfect channel state information and co-channel interference from nearby systems. In our considered system, two users perform downlink communications under power-domain NOMA. We analyzed the performance of this system with two modes of shadowing effect: heavy shadowing and average shadowing. The detailed performance was analyzed in terms of the outage probability and ergodic capacity of the system. We derive closed-form expressions and performed a numerical analysis. We discover that the performance of two destinations depends on the strength of the transmit power at the satellite. However, floor outage occurs because the system depends on other parameters, such as satellite link modes, noise levels, and the number of interference sources. To verify the authenticity of the derived closed-form expressions, we also perform Monte-Carlo simulations.Web of Science20221art. no. 7

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed
    • …
    corecore