26 research outputs found

    Secure and Efficient Distributed Relay-Based Rekeying Algorithm for Group Communication in Mobile Multihop Relay Network

    Get PDF
    In mobile multihop relay (MMR) networks, Relay multicast rekeying algorithm (RMRA) is meant to ensure secure multicast communication and selective updating of keys in MMR networks. However, in RMRA, the rekeying is carried out after a specific interval of time, which cannot ensure the security for multicast communication on joining the member. Secondly, the rekeying scheme generates a huge communication overhead on the serving multihop relay base station (MR-BS) on frequent joining of members. Lastly, there is nothing about when a member left the group communication. Thus, the rekeying scheme of RMRA fails to provide forward and backward secrecy and also is not scalable. To solve this problem, an improved rekeying scheme based on broadcasting a new seed value on joining and leaving of a member for updating the ongoing key management is proposed. The proposed scheme solves the issue of forward and backward secrecy and the scalability in a very simplified way. The forward and backward secrecy of the proposed scheme has been extensively validated by formal method using rank theorem. Furthermore, mathematical derivation showed that the proposed scheme out-performed the RMRA in terms of communication cost and complexity

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Efficient Security Protocols for Fast Handovers in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) are gaining popularity as a flexible and inexpensive replacement for Ethernet-based infrastructures. As the use of mobile devices such as smart phones and tablets is becoming ubiquitous, mobile clients should be guaranteed uninterrupted connectivity and services as they move from one access point to another within a WMN or between networks. To that end, we propose a novel security framework that consists of a new architecture, trust models, and protocols to offer mobile clients seamless and fast handovers in WMNs. The framework provides a dynamic, flexible, resource-efficient, and secure platform for intra-network and inter-network handovers in order to support real-time mobile applications in WMNs. In particular, we propose solutions to the following problems: authentication, key management, and group key management. We propose (1) a suite of certificate-based authentication protocols that minimize the authentication delay during handovers from one access point to another within a network (intra-network authentication). (2) a suite of key distribution and authentication protocols that minimize the authentication delay during handovers from one network to another (inter-network authentication). (3) a new implementation of group key management at the data link layer in order to reduce the group key update latency from linear time (as currently done in IEEE 802.11 standards) to logarithmic time. This contributes towards minimizing the latency of the handover process for mobile members in a multicast or broadcast group

    IEEE 802.16e Security Vulnerability : Analysis & Solution

    Get PDF
    Data security has become a major issue in most network protocols. For wireless system, security support is even more important to protect the users as well as the network. Due to this importance, different protocol were designed & deployed with network standards in order to add the security. The security sub layer of IEEE 802.16 employs an authenticated client/server key management protocol in which the B.S, the serve, control the distribution of keying materials to the client M.S. This paper analyzes the physical layer threat & MAC layer threat of WiMAX .First give an overview of security architecture of mobile WiMAX network, then investigate different security vulnerability & gives possible solution to overcome them. These lnerabilities are the possibilities to forge key messages in Multi- and Broadcast operation, some unauthenticated messages which are susceptible to forgery and the unencrypted management communication which reveal important management information. We modify DH key exchange protocol to fit it into mobile WiMAX network as well as eliminate existing weakness in original DH key exchange protocol. Also RSA & Elliptic curve Diffie Hellman key agreement algorithm are discuss which can be used to generate symmetric key between M.S & B.S. Several one way function are presented by using cryptography, which can be used to solve shared key vulnerability in Multi-&Broadcast service. We find the initial network procedure is not effectively secured that makes Manin- the-middle attacks & Denial of service attack possible

    A key Management Scheme for Access Control to GNSS Services

    Get PDF
    Conditional access is a challenging problem in GNSS scenarios. Most key management schemes present in literature can not cope with all GNSS related issues, such as extremely low bandwidth, stateless receivers and the absence of an aiding channel. After assessing existing techniques, a novel key management scheme called RevHash has been devised with particular emphasis on guaranteeing revocation capabilities to the system, in order for it to be robust against anomalies and attacks

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Low-cost group rekeying for unattended wireless sensor networks

    No full text
    Wireless sensor networks (WSNs) are made up of large groups of nodes that perform distributed monitoring services. Since sensor measurements are often sensitive data acquired in hostile environments, securing WSN becomes mandatory. However, WSNs consists of low-end devices and frequently preclude the presence of a centralized security manager. Therefore, achieving security is even more challenging. State-of-the-art proposals rely on: (1) attended and centralized security systems; or (2) establishing initial keys without taking into account how to efficiently manage rekeying. In this paper we present a scalable group key management proposal for unattended WSNs that is designed to reduce the rekeying cost when the group membership changes.Peer ReviewedPostprint (published version
    corecore