52 research outputs found

    High Performance Real-Time Scheduling Framework for Multiprocessor Systems

    Get PDF
    Embedded systems, performing specific functions in modern devices, have become pervasive in today's technology landscape. As many of these systems are real-time systems, they necessitate operations with stringent time constraints. This is especially evident in sectors like automotive and aerospace. This thesis introduces a High Performance Real-time Scheduling (HPRTS) framework, which is designed to navigate the multifaceted challenges faced by multiprocessor real-time systems. To begin with, the research attempts to bridge the gap between system reliability and resource sharing in Mixed-Criticality Systems (MCS). In addressing this, a novel fault-tolerance solution is presented. Its main goal is to enhance fault management and reduce blocking time during fault tolerance. Following this, the thesis delves into task allocation in systems with shared resources. In this context, we introduce a distinct Resource Contention Model (RCM). Using this model as a foundation, our allocation strategy is formulated with the aim to reduce resource contention. Moreover, in light of the escalating system complexity where tasks are represented using Directed Acyclic Graph (DAG) models, the research unveils a new Response Time Analysis (RTA) for multi-DAG systems. This particular analysis has been tailored to provide a safe and more refined bound. Reflecting on the contributions made, the achievements of the thesis highlight the potency of the HPRTS framework in steering real-time embedded systems toward high performance

    Multiprocessing with the exokernel operating system

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 57-59).by Benjie Chen.S.B.and M.Eng

    The exploitation of parallelism on shared memory multiprocessors

    Get PDF
    PhD ThesisWith the arrival of many general purpose shared memory multiple processor (multiprocessor) computers into the commercial arena during the mid-1980's, a rift has opened between the raw processing power offered by the emerging hardware and the relative inability of its operating software to effectively deliver this power to potential users. This rift stems from the fact that, currently, no computational model with the capability to elegantly express parallel activity is mature enough to be universally accepted, and used as the basis for programming languages to exploit the parallelism that multiprocessors offer. To add to this, there is a lack of software tools to assist programmers in the processes of designing and debugging parallel programs. Although much research has been done in the field of programming languages, no undisputed candidate for the most appropriate language for programming shared memory multiprocessors has yet been found. This thesis examines why this state of affairs has arisen and proposes programming language constructs, together with a programming methodology and environment, to close the ever widening hardware to software gap. The novel programming constructs described in this thesis are intended for use in imperative languages even though they make use of the synchronisation inherent in the dataflow model by using the semantics of single assignment when operating on shared data, so giving rise to the term shared values. As there are several distinct parallel programming paradigms, matching flavours of shared value are developed to permit the concise expression of these paradigms.The Science and Engineering Research Council

    Composition and synchronization of real-time components upon one processor

    Get PDF
    Many industrial systems have various hardware and software functions for controlling mechanics. If these functions act independently, as they do in legacy situations, their overall performance is not optimal. There is a trend towards optimizing the overall system performance and creating a synergy between the different functions in a system, which is achieved by replacing more and more dedicated, single-function hardware by software components running on programmable platforms. This increases the re-usability of the functions, but their synergy requires also that (parts of) the multiple software functions share the same embedded platform. In this work, we look at the composition of inter-dependent software functions on a shared platform from a timing perspective. We consider platforms comprised of one preemptive processor resource and, optionally, multiple non-preemptive resources. Each function is implemented by a set of tasks; the group of tasks of a function that executes on the same processor, along with its scheduler, is called a component. The tasks of a component typically have hard timing constraints. Fulfilling these timing constraints of a component requires analysis. Looking at a single function, co-operative scheduling of the tasks within a component has already proven to be a powerful tool to make the implementation of a function more predictable. For example, co-operative scheduling can accelerate the execution of a task (making it easier to satisfy timing constraints), it can reduce the cost of arbitrary preemptions (leading to more realistic execution-time estimates) and it can guarantee access to other resources without the need for arbitration by other protocols. Since timeliness is an important functional requirement, (re-)use of a component for composition and integration on a platform must deal with timing. To enable us to analyze and specify the timing requirements of a particular component in isolation from other components, we reserve and enforce the availability of all its specified resources during run-time. The real-time systems community has proposed hierarchical scheduling frameworks (HSFs) to implement this isolation between components. After admitting a component on a shared platform, a component in an HSF keeps meeting its timing constraints as long as it behaves as specified. If it violates its specification, it may be penalized, but other components are temporally isolated from the malignant effects. A component in an HSF is said to execute on a virtual platform with a dedicated processor at a speed proportional to its reserved processor supply. Three effects disturb this point of view. Firstly, processor time is supplied discontinuously. Secondly, the actual processor is faster. Thirdly, the HSF no longer guarantees the isolation of an individual component when two arbitrary components violate their specification during access to non-preemptive resources, even when access is arbitrated via well-defined real-time protocols. The scientific contributions of this work focus on these three issues. Our solutions to these issues cover the system design from component requirements to run-time allocation. Firstly, we present a novel scheduling method that enables us to integrate the component into an HSF. It guarantees that each integrated component executes its tasks exactly in the same order regardless of a continuous or a discontinuous supply of processor time. Using our method, the component executes on a virtual platform and it only experiences that the processor speed is different from the actual processor speed. As a result, we can focus on the traditional scheduling problem of meeting deadline constraints of tasks on a uni-processor platform. For such platforms, we show how scheduling tasks co-operatively within a component helps to meet the deadlines of this component. We compare the strength of these cooperative scheduling techniques to theoretically optimal schedulers. Secondly, we standardize the way of computing the resource requirements of a component, even in the presence of non-preemptive resources. We can therefore apply the same timing analysis to the components in an HSF as to the tasks inside, regardless of their scheduling or their protocol being used for non-preemptive resources. This increases the re-usability of the timing analysis of components. We also make non-preemptive resources transparent during the development cycle of a component, i.e., the developer of a component can be unaware of the actual protocol being used in an HSF. Components can therefore be unaware that access to non-preemptive resources requires arbitration. Finally, we complement the existing real-time protocols for arbitrating access to non-preemptive resources with mechanisms to confine temporal faults to those components in the HSF that share the same non-preemptive resources. We compare the overheads of sharing non-preemptive resources between components with and without mechanisms for confinement of temporal faults. We do this by means of experiments within an HSF-enabled real-time operating system

    High-Performance Composable Transactional Data Structures

    Get PDF
    Exploiting the parallelism in multiprocessor systems is a major challenge in the post ``power wall\u27\u27 era. Programming for multicore demands a change in the way we design and use fundamental data structures. Concurrent data structures allow scalable and thread-safe accesses to shared data. They provide operations that appear to take effect atomically when invoked individually. A main obstacle to the practical use of concurrent data structures is their inability to support composable operations, i.e., to execute multiple operations atomically in a transactional manner. The problem stems from the inability of concurrent data structure to ensure atomicity of transactions composed from operations on a single or multiple data structures instances. This greatly hinders software reuse because users can only invoke data structure operations in a limited number of ways. Existing solutions, such as software transactional memory (STM) and transactional boosting, manage transaction synchronization in an external layer separated from the data structure\u27s own thread-level concurrency control. Although this reduces programming effort, it leads to significant overhead associated with additional synchronization and the need to rollback aborted transactions. In this dissertation, I address the practicality and efficiency concerns by designing, implementing, and evaluating high-performance transactional data structures that facilitate the development of future highly concurrent software systems. Firstly, I present two methodologies for implementing high-performance transactional data structures based on existing concurrent data structures using either lock-based or lock-free synchronizations. For lock-based data structures, the idea is to treat data accessed by multiple operations as resources. The challenge is for each thread to acquire exclusive access to desired resources while preventing deadlock or starvation. Existing locking strategies, like two-phase locking and resource hierarchy, suffer from performance degradation under heavy contention, while lacking a desirable fairness guarantee. To overcome these issues, I introduce a scalable lock algorithm for shared-memory multiprocessors addressing the resource allocation problem. It is the first multi-resource lock algorithm that guarantees the strongest first-in, first-out (FIFO) fairness. For lock-free data structures, I present a methodology for transforming them into high-performance lock-free transactional data structures without revamping the data structures\u27 original synchronization design. My approach leverages the semantic knowledge of the data structure to eliminate the overhead of false conflicts and rollbacks. Secondly, I apply the proposed methodologies and present a suite of novel transactional search data structures in the form of an open source library. This is interesting not only because the fundamental importance of search data structures in computer science and their wide use in real world programs, but also because it demonstrate the implementation issues that arise when using the methodologies I have developed. This library is not only a compilation of a large number of fundamental data structures for multiprocessor applications, but also a framework for enabling composable transactions, and moreover, an infrastructure for continuous integration of new data structures. By taking such a top-down approach, I am able to identify and consider the interplay of data structure interface operations as a whole, which allows for scrutinizing their commutativity rules and hence opens up possibilities for design optimizations. Lastly, I evaluate the throughput of the proposed data structures using transactions with randomly generated operations on two difference hardware systems. To ensure the strongest possible competition, I chose the best performing alternatives from state-of-the-art locking protocols and transactional memory systems in the literature. The results show that it is straightforward to build efficient transactional data structures when using my multi-resource lock as a drop-in replacement for transactional boosted data structures. Furthermore, this work shows that it is possible to build efficient lock-free transactional data structures with all perceived benefits of lock-freedom and with performance far better than generic transactional memory systems

    The Nornir run-time system for parallel programs using Kahn process networks on multi-core machines – A flexible alternative to MapReduce

    Get PDF
    Even though shared-memory concurrency is a paradigm frequently used for developing parallel applications on small- and middle-sized machines, experience has shown that it is hard to use. This is largely caused by synchronization primitives which are low-level, inherently non-deterministic, and, consequently, non-intuitive to use. In this paper, we present the Nornir run-time system. Nornir is comparable to well-known frameworks such as MapReduce and Dryad that are recognized for their efficiency and simplicity. Unlike these frameworks, Nornir also supports process structures containing branches and cycles. Nornir is based on the formalism of Kahn process networks, which is a shared-nothing, message-passing model of concurrency. We deem this model a simple and deterministic alternative to shared-memory concurrency. Experiments with real and synthetic benchmarks on up to 8 CPUs show that performance in most cases scales almost linearly with the number of CPUs, when not limited by data dependencies. We also show that the modeling flexibility allows Nornir to outperform its MapReduce counterparts using well-known benchmarks. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited

    From Java to real-time Java : A model-driven methodology with automated toolchain

    Get PDF
    Real-time systems are receiving increasing attention with the emerging application scenarios that are safety-critical, complex in functionality, high on timing-related performance requirements, and cost-sensitive, such as autonomous vehicles. Development of real-time systems is error-prone and highly dependent on the sophisticated domain expertise, making it a costly process. There is a trend of the existing software without the real-time notion being re-developed to realise real-time features, e.g., in the big data technology. This paper utilises the principles of model-driven engineering (MDE) and proposes the first methodology that automatically converts standard time-sharing Java applications to real-time Java applications. It opens up a new research direction on development automation of real-time programming languages and inspires many research questions that can be jointly investigated by the embedded systems, programming languages as well as MDE communities
    • …
    corecore