8,224 research outputs found

    A distributed file service based on optimistic concurrency control

    Get PDF
    The design of a layered file service for the Amoeba Distributed System is discussed, on top of which various applications can easily be intplemented. The bottom layer is formed by the Amoeba Block Services, responsible for implementing stable storage and repficated, highly available disk blocks. The next layer is formed by the Amoeba File Service which provides version management and concurrency control for tree-structured files. On top of this layer, the appficafions, ranging from databases to source code control systems, determine the structure of the file trees and provide an interface to the users

    LogBase: A Scalable Log-structured Database System in the Cloud

    Full text link
    Numerous applications such as financial transactions (e.g., stock trading) are write-heavy in nature. The shift from reads to writes in web applications has also been accelerating in recent years. Write-ahead-logging is a common approach for providing recovery capability while improving performance in most storage systems. However, the separation of log and application data incurs write overheads observed in write-heavy environments and hence adversely affects the write throughput and recovery time in the system. In this paper, we introduce LogBase - a scalable log-structured database system that adopts log-only storage for removing the write bottleneck and supporting fast system recovery. LogBase is designed to be dynamically deployed on commodity clusters to take advantage of elastic scaling property of cloud environments. LogBase provides in-memory multiversion indexes for supporting efficient access to data maintained in the log. LogBase also supports transactions that bundle read and write operations spanning across multiple records. We implemented the proposed system and compared it with HBase and a disk-based log-structured record-oriented system modeled after RAMCloud. The experimental results show that LogBase is able to provide sustained write throughput, efficient data access out of the cache, and effective system recovery.Comment: VLDB201

    Automating Fine Concurrency Control in Object-Oriented Databases

    Get PDF
    Several propositions were done to provide adapted concurrency control to object-oriented databases. However, most of these proposals miss the fact that considering solely read and write access modes on instances may lead to less parallelism than in relational databases! This paper cope with that issue, and advantages are numerous: (1) commutativity of methods is determined a priori and automatically by the compiler, without measurable overhead, (2) run-time checking of commutativity is as efficient as for compatibility, (3) inverse operations need not be specified for recovery, (4) this scheme does not preclude more sophisticated approaches, and, last but not least, (5) relational and object-oriented concurrency control schemes with read and write access modes are subsumed under this proposition

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability
    corecore