99 research outputs found

    Multi-Layer Support Vector Machines

    Get PDF

    From Ordinal Ranking to Binary Classification

    Get PDF
    We study the ordinal ranking problem in machine learning. The problem can be viewed as a classification problem with additional ordinal information or as a regression problem without actual numerical information. From the classification perspective, we formalize the concept of ordinal information by a cost-sensitive setup, and propose some novel cost-sensitive classification algorithms. The algorithms are derived from a systematic cost-transformation technique, which carries a strong theoretical guarantee. Experimental results show that the novel algorithms perform well both in a general cost-sensitive setup and in the specific ordinal ranking setup. From the regression perspective, we propose the threshold ensemble model for ordinal ranking, which allows the machines to estimate a real-valued score (like regression) before quantizing it to an ordinal rank. We study the generalization ability of threshold ensembles and derive novel large-margin bounds on its expected test performance. In addition, we improve an existing algorithm and propose a novel algorithm for constructing large-margin threshold ensembles. Our proposed algorithms are efficient in training and achieve decent out-of-sample performance when compared with the state-of-the-art algorithm on benchmark data sets. We then study how ordinal ranking can be reduced to weighted binary classification. The reduction framework is simpler than the cost-sensitive classification approach and includes the threshold ensemble model as a special case. The framework allows us to derive strong theoretical results that tightly connect ordinal ranking with binary classification. We demonstrate the algorithmic and theoretical use of the reduction framework by extending SVM and AdaBoost, two of the most popular binary classification algorithms, to the area of ordinal ranking. Coupling SVM with the reduction framework results in a novel and faster algorithm for ordinal ranking with superior performance on real-world data sets, as well as a new bound on the expected test performance for generalized linear ordinal rankers. Coupling AdaBoost with the reduction framework leads to a novel algorithm that boosts the training accuracy of any cost-sensitive ordinal ranking algorithms theoretically, and in turn improves their test performance empirically. From the studies above, the key to improve ordinal ranking is to improve binary classification. In the final part of the thesis, we include two projects that aim at understanding binary classification better in the context of ensemble learning. First, we discuss how AdaBoost is restricted to combining only a finite number of hypotheses and remove the restriction by formulating a framework of infinite ensemble learning based on SVM. The framework can output an infinite ensemble through embedding infinitely many hypotheses into an~SVM kernel. Using the framework, we show that binary classification (and hence ordinal ranking) can be improved by going from a finite ensemble to an infinite one. Second, we discuss how AdaBoost carries the property of being resistant to overfitting. Then, we propose the SeedBoost algorithm, which uses the property as a machinery to prevent other learning algorithms from overfitting. Empirical results demonstrate that SeedBoost can indeed improve an overfitting algorithm on some data sets.</p

    Contextual Search in the Presence of Irrational Agents

    Full text link
    We study contextual search, a generalization of binary search in higher dimensions, which captures settings such as feature-based dynamic pricing. Standard game-theoretic formulations of this problem assume that agents act in accordance with a specific behavioral model. In practice, however, some agents may not prescribe to the dominant behavioral model or may act in ways that are seemingly arbitrarily irrational. Existing algorithms heavily depend on the behavioral model being (approximately) accurate for all agents and have poor performance in the presence of even a few such arbitrarily irrational agents. We initiate the study of contextual search when some of the agents can behave in ways inconsistent with the underlying behavioral model. In particular, we provide two algorithms, one built on robustifying multidimensional binary search methods and one on translating the setting to a proxy setting appropriate for gradient descent. Our techniques draw inspiration from learning theory, game theory, high-dimensional geometry, and convex analysis.Comment: Compared to the first version titled "Corrupted Multidimensional Binary Search: Learning in the Presence of Irrational Agents", this version provides a broader scope of behavioral models of irrationality, specifies how the results apply to different loss functions, and discusses the power and limitations of additional algorithmic approache

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure

    Model-Assisted Probabilistic Safe Adaptive Control With Meta-Bayesian Learning

    Full text link
    Breaking safety constraints in control systems can lead to potential risks, resulting in unexpected costs or catastrophic damage. Nevertheless, uncertainty is ubiquitous, even among similar tasks. In this paper, we develop a novel adaptive safe control framework that integrates meta learning, Bayesian models, and control barrier function (CBF) method. Specifically, with the help of CBF method, we learn the inherent and external uncertainties by a unified adaptive Bayesian linear regression (ABLR) model, which consists of a forward neural network (NN) and a Bayesian output layer. Meta learning techniques are leveraged to pre-train the NN weights and priors of the ABLR model using data collected from historical similar tasks. For a new control task, we refine the meta-learned models using a few samples, and introduce pessimistic confidence bounds into CBF constraints to ensure safe control. Moreover, we provide theoretical criteria to guarantee probabilistic safety during the control processes. To validate our approach, we conduct comparative experiments in various obstacle avoidance scenarios. The results demonstrate that our algorithm significantly improves the Bayesian model-based CBF method, and is capable for efficient safe exploration even with multiple uncertain constraints
    • …
    corecore