564 research outputs found

    EFFICIENT AND SCALABLE NETWORK SECURITY PROTOCOLS BASED ON LFSR SEQUENCES

    Get PDF
    The gap between abstract, mathematics-oriented research in cryptography and the engineering approach of designing practical, network security protocols is widening. Network researchers experiment with well-known cryptographic protocols suitable for different network models. On the other hand, researchers inclined toward theory often design cryptographic schemes without considering the practical network constraints. The goal of this dissertation is to address problems in these two challenging areas: building bridges between practical network security protocols and theoretical cryptography. This dissertation presents techniques for building performance sensitive security protocols, using primitives from linear feedback register sequences (LFSR) sequences, for a variety of challenging networking applications. The significant contributions of this thesis are: 1. A common problem faced by large-scale multicast applications, like real-time news feeds, is collecting authenticated feedback from the intended recipients. We design an efficient, scalable, and fault-tolerant technique for combining multiple signed acknowledgments into a single compact one and observe that most signatures (based on the discrete logarithm problem) used in previous protocols do not result in a scalable solution to the problem. 2. We propose a technique to authenticate on-demand source routing protocols in resource-constrained wireless mobile ad-hoc networks. We develop a single-round multisignature that requires no prior cooperation among nodes to construct the multisignature and supports authentication of cached routes. 3. We propose an efficient and scalable aggregate signature, tailored for applications like building efficient certificate chains, authenticating distributed and adaptive content management systems and securing path-vector routing protocols. 4. We observe that blind signatures could form critical building blocks of privacypreserving accountability systems, where an authority needs to vouch for the legitimacy of a message but the ownership of the message should be kept secret from the authority. We propose an efficient blind signature that can serve as a protocol building block for performance sensitive, accountability systems. All special forms digital signatures—aggregate, multi-, and blind signatures—proposed in this dissertation are the first to be constructed using LFSR sequences. Our detailed cost analysis shows that for a desired level of security, the proposed signatures outperformed existing protocols in computation cost, number of communication rounds and storage overhead

    CONSTRUCTION OF EFFICIENT AUTHENTICATION SCHEMES USING TRAPDOOR HASH FUNCTIONS

    Get PDF
    In large-scale distributed systems, where adversarial attacks can have widespread impact, authentication provides protection from threats involving impersonation of entities and tampering of data. Practical solutions to authentication problems in distributed systems must meet specific constraints of the target system, and provide a reasonable balance between security and cost. The goal of this dissertation is to address the problem of building practical and efficient authentication mechanisms to secure distributed applications. This dissertation presents techniques to construct efficient digital signature schemes using trapdoor hash functions for various distributed applications. Trapdoor hash functions are collision-resistant hash functions associated with a secret trapdoor key that allows the key-holder to find collisions between hashes of different messages. The main contributions of this dissertation are as follows: 1. A common problem with conventional trapdoor hash functions is that revealing a collision producing message pair allows an entity to compute additional collisions without knowledge of the trapdoor key. To overcome this problem, we design an efficient trapdoor hash function that prevents all entities except the trapdoor key-holder from computing collisions regardless of whether collision producing message pairs are revealed by the key-holder. 2. We design a technique to construct efficient proxy signatures using trapdoor hash functions to authenticate and authorize agents acting on behalf of users in agent-based computing systems. Our technique provides agent authentication, assurance of agreement between delegator and agent, security without relying on secure communication channels and control over an agent’s capabilities. 3. We develop a trapdoor hash-based signature amortization technique for authenticating real-time, delay-sensitive streams. Our technique provides independent verifiability of blocks comprising a stream, minimizes sender-side and receiver-side delays, minimizes communication overhead, and avoids transmission of redundant information. 4. We demonstrate the practical efficacy of our trapdoor hash-based techniques for signature amortization and proxy signature construction by presenting discrete log-based instantiations of the generic techniques that are efficient to compute, and produce short signatures. Our detailed performance analyses demonstrate that the proposed schemes outperform existing schemes in computation cost and signature size. We also present proofs for security of the proposed discrete-log based instantiations against forgery attacks under the discrete-log assumption

    Efficient Revocable ID-Based Signature With Cloud Revocation Server

    Get PDF
    Over the last few years, identity-based cryptosystem (IBC) has attracted widespread attention because it avoids the high overheads associated with public key certificate management. However, an unsolved but critical issue about IBC is how to revoke a misbehaving user. There are some revocable identity-based encryption schemes that have been proposed recently, but little work on the revocation problem of identity-based signature has been undertaken so far. One approach for revocation in identity-based settings is to update users\u27 private keys periodically, which is usually done by the key generation center (KGC). But with this approach, the load on the KGC will increase quickly when the number of users increases. In this paper, we propose an efficient revocable identity-based signature (RIBS) scheme in which the revocation functionality is outsourced to a cloud revocation server (CRS). In our proposed approach, most of the computations needed during key-updates are offloaded to the CRS. We describe the new framework and the security model for the RIBS scheme with CRS and we prove that the proposed scheme is existentially unforgeable against adaptively chosen messages and identity attacks in the random oracle model. Furthermore, we monstrate that our scheme outperforms previous IBS schemes in terms of lower computation and communication costs

    An efficient identity-based group signature scheme over elliptic curves

    Get PDF
    Group signatures allow every authorized member of a group to sign on behalf of the underlying group. Anyone except the group manager is not able to validate who generates a signature for a document. A new identity-based group signature scheme is proposed in this paper. This scheme makes use of a bilinear function derived from Weil pairings over elliptic curves. Also, in the underlying composition of group signatures there is no exponentiation computation modulo a large composite number. Due to these ingredients of the novel group signatures, the proposed scheme is efficient with respect to the computation cost in signing process. In addition, this paper comes up with a security proof against adaptive forgeability
    • …
    corecore