36,440 research outputs found

    Resource allocation for multimedia messaging services over EGPRS

    Get PDF
    The General Packet Radio Service (GPRS) is a new bearer service for GSM that greatly simplifies wireless access to packet data networks, such as the Internet, corporate LANs or to mobile portals. It applies a packet radio standard to transfer user data packets in wellorganized way between Mobile Stations (MS) and external packet data networks. The Enhanced General Packet Radio Service (EGPRS) is an extension of GPRS, offering much greater capacity. These enhancements have allowed the introduction of new services like Multimedia Messaging Services (MMS). MMS enables messaging with full content versatility, including images, audio, video, data and text, from terminal to terminal or from terminal to e-mail. The Wireless Application Protocol (WAP) is the WAP Forum standard for the presentation and delivery of wireless information and telephony services on mobile phones and other wireless terminals. In this thesis it is indicated that efficient radio resource allocation is necessary for managing different types of traffic in order to maintain the quality demands for different types of services. A theoretical model of MMS and WAP traffic is developed, and based on this model a simulator is implemented in Java programming language. This thesis proposes two techniques to improve the radio resource allocation algorithm performance called "radio link condition diversification" and "interactive traffic class prioritization". The radio link condition diversification technique defines minimum radio link quality that allows the user to receive their packets. The interactive traffic class prioritization technique defines different priorities for WAP packets and for MMS packets. Both techniques give good results in increasing user's perception of services and increasing network efficiency. This thesis indicates also that the prioritization mechanism successfully improves the response time of the interactive service by up to 80% with a setting of priority for interactive traffic class and decreasing the performance of the background traffic. This decrease is within a range acceptable by the end-user and that the link conditions limit mechanism has an advantage in terms of resource utilization

    Latency and bit-error-rate evaluation for radio-over-ethernet in optical fiber front-haul networks

    Get PDF
    Nowadays several research projects are under progress to manage a soft migration toward the 5th generation networks. Radio over Ethernet (RoE) is one of recent topics that try to have a cost efficient and independent front-haul network. In this paper, we discuss the requirements of the 5G networks and analyze the conditions for the implementation of a RoE protocol. For this purpose we digitalize radio frames that are taken from BBU or RRH and create RoE basic frames considering all the requirements of protocol. We then encapsulate RoE basic frames into an Ethernet packet and finally experimentally evaluate this Ethernet packet as a case of study for RoE applications. The packet is transmitted through different fiber spans, measuring the BER and latency on each case. The system achieves BER values below the FEC limit and a manageable latency. These results serve as a guideline and proof of concept for applications on RoE, showing the viability of its implementation as part of the next generation of front-haul networks

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    The ContikiMAC Radio Duty Cycling Protocol

    Get PDF
    Low-power wireless devices must keep their radio transceivers off as much as possible to reach a low power consumption, but must wake up often enough to be able to receive communication from their neighbors. This report describes the ContikiMAC radio duty cycling mechanism, the default radio duty cycling mechanism in Contiki 2.5, which uses a power efficient wake-up mechanism with a set of timing constraints to allow device to keep their transceivers off. With ContikiMAC, nodes can participate in network communication yet keep their radios turned off for roughly 99% of the time. This report describes the ContikiMAC mechanism, measures the energy consumption of individual ContikiMAC operations, and evaluates the efficiency of the fast sleep and phase-lock optimizations

    PluralisMAC: a generic multi-MAC framework for heterogeneous, multiservice wireless networks, applied to smart containers

    Get PDF
    Developing energy-efficient MAC protocols for lightweight wireless systems has been a challenging task for decades because of the specific requirements of various applications and the varying environments in which wireless systems are deployed. Many MAC protocols for wireless networks have been proposed, often custom-made for a specific application. It is clear that one MAC does not fit all the requirements. So, how should a MAC layer deal with an application that has several modes (each with different requirements) or with the deployment of another application during the lifetime of the system? Especially in a mobile wireless system, like Smart Monitoring of Containers, we cannot know in advance the application state (empty container versus stuffed container). Dynamic switching between different energy-efficient MAC strategies is needed. Our architecture, called PluralisMAC, contains a generic multi-MAC framework and a generic neighbour monitoring and filtering framework. To validate the real-world feasibility of our architecture, we have implemented it in TinyOS and have done experiments on the TMote Sky nodes in the w-iLab.t testbed. Experimental results show that dynamic switching between MAC strategies is possible with minimal receive chain overhead, while meeting the various application requirements (reliability and low-energy consumption)

    SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks

    Full text link
    In this work, we propose a reliable, power efficient and high throughput routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop topology to achieve minimum energy consumption and longer network lifetime. We propose a cost function to select parent node or forwarder. Proposed cost function selects a parent node which has high residual energy and minimum distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes while distance parameter ensures successful packet delivery to sink. Simulation results show that our proposed protocol maximize the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
    corecore