15,795 research outputs found

    Coarse-to-Fine Lifted MAP Inference in Computer Vision

    Full text link
    There is a vast body of theoretical research on lifted inference in probabilistic graphical models (PGMs). However, few demonstrations exist where lifting is applied in conjunction with top of the line applied algorithms. We pursue the applicability of lifted inference for computer vision (CV), with the insight that a globally optimal (MAP) labeling will likely have the same label for two symmetric pixels. The success of our approach lies in efficiently handling a distinct unary potential on every node (pixel), typical of CV applications. This allows us to lift the large class of algorithms that model a CV problem via PGM inference. We propose a generic template for coarse-to-fine (C2F) inference in CV, which progressively refines an initial coarsely lifted PGM for varying quality-time trade-offs. We demonstrate the performance of C2F inference by developing lifted versions of two near state-of-the-art CV algorithms for stereo vision and interactive image segmentation. We find that, against flat algorithms, the lifted versions have a much superior anytime performance, without any loss in final solution quality.Comment: Published in IJCAI 201

    A Review of Codebook Models in Patch-Based Visual Object Recognition

    No full text
    The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods

    Information Extraction, Data Integration, and Uncertain Data Management: The State of The Art

    Get PDF
    Information Extraction, data Integration, and uncertain data management are different areas of research that got vast focus in the last two decades. Many researches tackled those areas of research individually. However, information extraction systems should have integrated with data integration methods to make use of the extracted information. Handling uncertainty in extraction and integration process is an important issue to enhance the quality of the data in such integrated systems. This article presents the state of the art of the mentioned areas of research and shows the common grounds and how to integrate information extraction and data integration under uncertainty management cover
    • …
    corecore