1,094 research outputs found

    A multi-objective, hub-and-spoke model to design and manage biofuel supply chains

    Get PDF
    In this paper we propose a multi-objective, mixed integer linear programming model to design and manage the supply chain for biofuels. This model captures the trade-offs that exist between costs, environmental and social impacts of delivering biofuels. The in-bound supply chain for biofuel plants relies on a hub-and-spoke structure which optimizes transportation costs of biomass. The model proposed optimizes the CO2 style= position: relative; tabindex= 0 id= MathJax-Element-1-Frame \u3eCO2 emissions due to transportation-related activities in the supply chain. The model also optimizes the social impact of biofuels. The social impacts are evaluated by the number of jobs created. The multi-objective optimization model is solved using an augmented ϵ style= position: relative; tabindex= 0 id= MathJax-Element-2-Frame \u3eϵ-constraint method. The method provides a set of Pareto optimal solutions. We develop a case study using data from the Midwest region of the USA. The numerical analyses estimates the quantity and cost of cellulosic ethanol delivered under different scenarios generated. The insights we provide will help policy makers design policies which encourage and support renewable energy production

    A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times

    Get PDF
    The textbook Dantzig-Wolfe decomposition for the Capacitated LotSizing Problem (CLSP),as already proposed by Manne in 1958, has animportant structural deficiency. Imposingintegrality constraints onthe variables in the full blown master will not necessarily givetheoptimal IP solution as only production plans which satisfy theWagner-Whitin condition canbe selected. It is well known that theoptimal solution to a capacitated lot sizing problem willnotnecessarily have this Wagner-Whitin property. The columns of thetraditionaldecomposition model include both the integer set up andcontinuous production quantitydecisions. Choosing a specific set upschedule implies also taking the associated Wagner-Whitin productionquantities. We propose the correct Dantzig-Wolfedecompositionreformulation separating the set up and productiondecisions. This formulation gives the samelower bound as Manne'sreformulation and allows for branch-and-price. We use theCapacitatedLot Sizing Problem with Set Up Times to illustrate our approach.Computationalexperiments are presented on data sets available from theliterature. Column generation isspeeded up by a combination of simplexand subgradient optimization for finding the dualprices. The resultsshow that branch-and-price is computationally tractable andcompetitivewith other approaches. Finally, we briefly discuss how thisnew Dantzig-Wolfe reformulationcan be generalized to other mixedinteger programming problems, whereas in theliterature,branch-and-price algorithms are almost exclusivelydeveloped for pure integer programmingproblems.branch-and-price;Lagrange relaxation;Dantzig-Wolfe decomposition;lot sizing;mixed-integer programming

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    Optimization Approaches for Electricity Generation Expansion Planning Under Uncertainty

    Get PDF
    In this dissertation, we study the long-term electricity infrastructure investment planning problems in the electrical power system. These long-term capacity expansion planning problems aim at making the most effective and efficient investment decisions on both thermal and wind power generation units. One of our research focuses are uncertainty modeling in these long-term decision-making problems in power systems, because power systems\u27 infrastructures require a large amount of investments, and need to stay in operation for a long time and accommodate many different scenarios in the future. The uncertainties we are addressing in this dissertation mainly include demands, electricity prices, investment and maintenance costs of power generation units. To address these future uncertainties in the decision-making process, this dissertation adopts two different optimization approaches: decision-dependent stochastic programming and adaptive robust optimization. In the decision-dependent stochastic programming approach, we consider the electricity prices and generation units\u27 investment and maintenance costs being endogenous uncertainties, and then design probability distribution functions of decision variables and input parameters based on well-established econometric theories, such as the discrete-choice theory and the economy-of-scale mechanism. In the adaptive robust optimization approach, we focus on finding the multistage adaptive robust solutions using affine policies while considering uncertain intervals of future demands. This dissertation mainly includes three research projects. The study of each project consists of two main parts, the formulation of its mathematical model and the development of solution algorithms for the model. This first problem concerns a large-scale investment problem on both thermal and wind power generation from an integrated angle without modeling all operational details. In this problem, we take a multistage decision-dependent stochastic programming approach while assuming uncertain electricity prices. We use a quasi-exact solution approach to solve this multistage stochastic nonlinear program. Numerical results show both computational efficient of the solutions approach and benefits of using our decision-dependent model over traditional stochastic programming models. The second problem concerns the long-term investment planning with detailed models of real-time operations. We also take a multistage decision-dependent stochastic programming approach to address endogenous uncertainties such as generation units\u27 investment and maintenance costs. However, the detailed modeling of operations makes the problem a bilevel optimization problem. We then transform it to a Mathematic Program with Equilibrium Constraints (MPEC) problem. We design an efficient algorithm based on Dantzig-Wolfe decomposition to solve this multistage stochastic MPEC problem. The last problem concerns a multistage adaptive investment planning problem while considering uncertain future demand at various locations. To solve this multi-level optimization problem, we take advantage of affine policies to transform it to a single-level optimization problem. Our numerical examples show the benefits of using this multistage adaptive robust planning model over both traditional stochastic programming and single-level robust optimization approaches. Based on numerical studies in the three projects, we conclude that our approaches provide effective and efficient modeling and computational tools for advanced power systems\u27 expansion planning

    Resource-constrained project scheduling.

    Get PDF
    Abstract: Resource-constrained project scheduling involves the scheduling of project activities subject to precedence and resource constraints in order to meet the objective(s) in the best possible way. The area covers a wide variety of problem types. The objective of this paper is to provide a survey of what we believe are important recent in the area . Our main focus will be on the recent progress made in and the encouraging computational experience gained with the use of optimal solution procedures for the basic resource-constrained project scheduling problem (RCPSP) and important extensions. The RCPSP involves the scheduling of a project its duration subject to zero-lag finish-start precedence constraints of the PERT/CPM type and constant availability constraints on the required set of renewable resources. We discuss recent striking advances in dealing with this problem using a new depth-first branch-and-bound procedure, elaborating on the effective and efficient branching scheme, bounding calculations and dominance rules, and discuss the potential of using truncated branch-and-bound. We derive a set of conclusions from the research on optimal solution procedures for the basis RCPSP and subsequently illustrate how effective and efficient branching rules and several of the strong dominance and bounding arguments can be extended to a rich and realistic variety of related problems. The preemptive resource-constrained project scheduling problem (PRCPSP) relaxes the nonpreemption condition of the RCPSP, thus allowing activities to be interrupted at integer points in time and resumed later without additional penalty cost. The generalized resource-constrained project scheduling (GRCPSP) extends the RCPSP to the case of precedence diagramming type of precedence constraints (minimal finish-start, start-start, start-finish, finish-finish precedence relations), activity ready times, deadlines and variable resource availability's. The resource-constrained project scheduling problem with generalized precedence relations (RCPSP-GPR) allows for start-start, finish-start and finish-finish constraints with minimal and maximal time lags. The MAX-NPV problem aims at scheduling project activities in order to maximize the net present value of the project in the absence of resource constraints. The resource-constrained project scheduling problem with discounted cash flows (RCPSP-DC) aims at the same non-regular objective in the presence of resource constraints. The resource availability cost problem (RACP) aims at determining the cheapest resource availability amounts for which a feasible solution exists that does not violate the project deadline. In the discrete time/cost trade-off problem (DTCTP) the duration of an activity is a discrete, non-increasing function of the amount of a single nonrenewable resource committed to it. In the discrete time/resource trade-off problem (DTRTP) the duration of an activity is a discrete, non-increasing function of the amount of a single renewable resource. Each activity must then be scheduled in one of its possible execution modes. In addition to time/resource trade-offs, the multi-mode project scheduling problem (MRCPSP) allows for resource/resource trade-offs and constraints on renewable, nonrenewable and doubly-constrained resources. We report on recent computational results and end with overall conclusions and suggestions for future research.Scheduling; Optimal;
    • …
    corecore