497 research outputs found

    An Efficient Precoder Design for Multiuser MIMO Cognitive Radio Networks with Interference Constraints

    Get PDF
    We consider a linear precoder design for an underlay cognitive radio multiple-input multiple-output broadcast channel, where the secondary system consisting of a secondary base-station (BS) and a group of secondary users (SUs) is allowed to share the same spectrum with the primary system. All the transceivers are equipped with multiple antennas, each of which has its own maximum power constraint. Assuming zero-forcing method to eliminate the multiuser interference, we study the sum rate maximization problem for the secondary system subject to both per-antenna power constraints at the secondary BS and the interference power constraints at the primary users. The problem of interest differs from the ones studied previously that often assumed a sum power constraint and/or single antenna employed at either both the primary and secondary receivers or the primary receivers. To develop an efficient numerical algorithm, we first invoke the rank relaxation method to transform the considered problem into a convex-concave problem based on a downlink-uplink result. We then propose a barrier interior-point method to solve the resulting saddle point problem. In particular, in each iteration of the proposed method we find the Newton step by solving a system of discrete-time Sylvester equations, which help reduce the complexity significantly, compared to the conventional method. Simulation results are provided to demonstrate fast convergence and effectiveness of the proposed algorithm.Comment: Accepted to appear in IEEE Trans. Vehicular Technology, 13 pages, 8 figure

    Cooperative Precoding with Limited Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the resultant performance gains can be significantly compromised in practice if the precoder design fails to account for the inaccuracy in the channel state information (CSI) feedback. This paper addresses this issue by considering finite-rate CSI feedback from receivers to their interfering transmitters in the two-user multiple-input-multiple-output (MIMO) interference channel, called cooperative feedback, and proposing a systematic method for designing transceivers comprising linear precoders and equalizers. Specifically, each precoder/equalizer is decomposed into inner and outer components for nulling the cross-link interference and achieving array gain, respectively. The inner precoders/equalizers are further optimized to suppress the residual interference resulting from finite-rate cooperative feedback. Further- more, the residual interference is regulated by additional scalar cooperative feedback signals that are designed to control transmission power using different criteria including fixed interference margin and maximum sum throughput. Finally, the required number of cooperative precoder feedback bits is derived for limiting the throughput loss due to precoder quantization.Comment: 23 pages; 5 figures; this work was presented in part at Asilomar 2011 and will appear in IEEE Trans. on Wireless Com

    Energy-Efficient Symbol-Level Precoding in Multiuser MISO Based on Relaxed Detection Region

    Get PDF
    This paper addresses the problem of exploiting interference among simultaneous multiuser transmissions in the downlink of multiple-antenna systems. Using symbol-level precoding, a new approach towards addressing the multiuser interference is discussed through jointly utilizing the channel state information (CSI) and data information (DI). The interference among the data streams is transformed under certain conditions to a useful signal that can improve the signal-to-interference noise ratio (SINR) of the downlink transmissions and as a result the system's energy efficiency. In this context, new constructive interference precoding techniques that tackle the transmit power minimization (min power) with individual SINR constraints at each user's receiver have been proposed. In this paper, we generalize the CI precoding design under the assumption that the received MPSK symbol can reside in a relaxed region in order to be correctly detected. Moreover, a weighted maximization of the minimum SNR among all users is studied taking into account the relaxed detection region. Symbol error rate analysis (SER) for the proposed precoding is discussed to characterize the tradeoff between transmit power reduction and SER increase due to the relaxation. Based on this tradeoff, the energy efficiency performance of the proposed technique is analyzed. Finally, extensive numerical results show that the proposed schemes outperform other state-of-the-art techniques.Comment: Submitted to IEEE transactions on Wireless Communications. arXiv admin note: substantial text overlap with arXiv:1408.470
    corecore