455 research outputs found

    Distributed Linear Precoding and User Selection in Coordinated Multicell Systems

    Full text link
    In this manuscript we tackle the problem of semi-distributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signal-to-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs affect the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.Comment: 12 pages, 6 figure

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Improved Linear Precoding over Block Diagonalization in Multi-cell Cooperative Networks

    Full text link
    In downlink multiuser multiple-input multiple-output (MIMO) systems, block diagonalization (BD) is a practical linear precoding scheme which achieves the same degrees of freedom (DoF) as the optimal linear/nonlinear precoding schemes. However, its sum-rate performance is rather poor in the practical SNR regime due to the transmit power boost problem. In this paper, we propose an improved linear precoding scheme over BD with a so-called "effective-SNR-enhancement" technique. The transmit covariance matrices are obtained by firstly solving a power minimization problem subject to the minimum rate constraint achieved by BD, and then properly scaling the solution to satisfy the power constraints. It is proved that such approach equivalently enhances the system SNR, and hence compensates the transmit power boost problem associated with BD. The power minimization problem is in general non-convex. We therefore propose an efficient algorithm that solves the problem heuristically. Simulation results show significant sum rate gains over the optimal BD and the existing minimum mean square error (MMSE) based precoding schemes.Comment: 21 pages, 4 figure

    Multiuser Millimeter Wave Beamforming Strategies with Quantized and Statistical CSIT

    Full text link
    To alleviate the high cost of hardware in mmWave systems, hybrid analog/digital precoding is typically employed. In the conventional two-stage feedback scheme, the analog beamformer is determined by beam search and feedback to maximize the desired signal power of each user. The digital precoder is designed based on quantization and feedback of effective channel to mitigate multiuser interference. Alternatively, we propose a one-stage feedback scheme which effectively reduces the complexity of the signalling and feedback procedure. Specifically, the second-order channel statistics are leveraged to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. Under a fixed total feedback constraint, we investigate the conditions under which the one-stage feedback scheme outperforms the conventional two-stage counterpart. Moreover, a rate splitting (RS) transmission strategy is introduced to further tackle the multiuser interference and enhance the rate performance. Consider (1) RS precoded by the one-stage feedback scheme and (2) conventional transmission strategy precoded by the two-stage scheme with the same first-stage feedback as (1) and also certain amount of extra second-stage feedback. We show that (1) can achieve a sum rate comparable to that of (2). Hence, RS enables remarkable saving in the second-stage training and feedback overhead.Comment: submitted to TW

    Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission

    Full text link
    The throughput of multicell systems is inherently limited by interference and the available communication resources. Coordinated resource allocation is the key to efficient performance, but the demand on backhaul signaling and computational resources grows rapidly with number of cells, terminals, and subcarriers. To handle this, we propose a novel multicell framework with dynamic cooperation clusters where each terminal is jointly served by a small set of base stations. Each base station coordinates interference to neighboring terminals only, thus limiting backhaul signalling and making the framework scalable. This framework can describe anything from interference channels to ideal joint multicell transmission. The resource allocation (i.e., precoding and scheduling) is formulated as an optimization problem (P1) with performance described by arbitrary monotonic functions of the signal-to-interference-and-noise ratios (SINRs) and arbitrary linear power constraints. Although (P1) is non-convex and difficult to solve optimally, we are able to prove: 1) Optimality of single-stream beamforming; 2) Conditions for full power usage; and 3) A precoding parametrization based on a few parameters between zero and one. These optimality properties are used to propose low-complexity strategies: both a centralized scheme and a distributed version that only requires local channel knowledge and processing. We evaluate the performance on measured multicell channels and observe that the proposed strategies achieve close-to-optimal performance among centralized and distributed solutions, respectively. In addition, we show that multicell interference coordination can give substantial improvements in sum performance, but that joint transmission is very sensitive to synchronization errors and that some terminals can experience performance degradations.Comment: Published in IEEE Transactions on Signal Processing, 15 pages, 7 figures. This version corrects typos related to Eq. (4) and Eq. (28
    • …
    corecore