861 research outputs found

    Super-Resolution Sparse MIMO-OFDM Channel Estimation Based on Spatial and Temporal Correlations

    Full text link
    This letter proposes a parametric sparse multiple input multiple output (MIMO)-OFDM channel estimation scheme based on the finite rate of innovation (FRI) theory, whereby super-resolution estimates of path delays with arbitrary values can be achieved. Meanwhile, both the spatial and temporal correlations of wireless MIMO channels are exploited to improve the accuracy of the channel estimation. For outdoor communication scenarios, where wireless channels are sparse in nature, path delays of different transmit-receive antenna pairs share a common sparse pattern due to the spatial correlation of MIMO channels. Meanwhile, the channel sparse pattern is nearly unchanged during several adjacent OFDM symbols due to the temporal correlation of MIMO channels. By simultaneously exploiting those MIMO channel characteristics, the proposed scheme performs better than existing state-of-the-art schemes. Furthermore, by joint processing of signals associated with different antennas, the pilot overhead can be reduced under the framework of the FRI theory.Comment: This paper has been accepted by IEEE Communications Letter

    Structured Compressive Sensing Based Spatio-Temporal Joint Channel Estimation for FDD Massive MIMO

    Full text link
    Massive MIMO is a promising technique for future 5G communications due to its high spectrum and energy efficiency. To realize its potential performance gain, accurate channel estimation is essential. However, due to massive number of antennas at the base station (BS), the pilot overhead required by conventional channel estimation schemes will be unaffordable, especially for frequency division duplex (FDD) massive MIMO. To overcome this problem, we propose a structured compressive sensing (SCS)-based spatio-temporal joint channel estimation scheme to reduce the required pilot overhead, whereby the spatio-temporal common sparsity of delay-domain MIMO channels is leveraged. Particularly, we first propose the non-orthogonal pilots at the BS under the framework of CS theory to reduce the required pilot overhead. Then, an adaptive structured subspace pursuit (ASSP) algorithm at the user is proposed to jointly estimate channels associated with multiple OFDM symbols from the limited number of pilots, whereby the spatio-temporal common sparsity of MIMO channels is exploited to improve the channel estimation accuracy. Moreover, by exploiting the temporal channel correlation, we propose a space-time adaptive pilot scheme to further reduce the pilot overhead. Additionally, we discuss the proposed channel estimation scheme in multi-cell scenario. Simulation results demonstrate that the proposed scheme can accurately estimate channels with the reduced pilot overhead, and it is capable of approaching the optimal oracle least squares estimator.Comment: 16 pages; 12 figures;submitted to IEEE Trans. Communication

    Modulated Unit-Norm Tight Frames for Compressed Sensing

    Full text link
    In this paper, we propose a compressed sensing (CS) framework that consists of three parts: a unit-norm tight frame (UTF), a random diagonal matrix and a column-wise orthonormal matrix. We prove that this structure satisfies the restricted isometry property (RIP) with high probability if the number of measurements m=O(slog2slog2n)m = O(s \log^2s \log^2n) for ss-sparse signals of length nn and if the column-wise orthonormal matrix is bounded. Some existing structured sensing models can be studied under this framework, which then gives tighter bounds on the required number of measurements to satisfy the RIP. More importantly, we propose several structured sensing models by appealing to this unified framework, such as a general sensing model with arbitrary/determinisic subsamplers, a fast and efficient block compressed sensing scheme, and structured sensing matrices with deterministic phase modulations, all of which can lead to improvements on practical applications. In particular, one of the constructions is applied to simplify the transceiver design of CS-based channel estimation for orthogonal frequency division multiplexing (OFDM) systems.Comment: submitted to IEEE Transactions on Signal Processin

    Channel Estimation for Millimeter-Wave Massive MIMO with Hybrid Precoding over Frequency-Selective Fading Channels

    Full text link
    Channel estimation for millimeter-wave (mmWave) massive MIMO with hybrid precoding is challenging, since the number of radio frequency (RF) chains is usually much smaller than that of antennas. To date, several channel estimation schemes have been proposed for mmWave massive MIMO over narrow-band channels, while practical mmWave channels exhibit the frequency-selective fading (FSF). To this end, this letter proposes a multi-user uplink channel estimation scheme for mmWave massive MIMO over FSF channels. Specifically, by exploiting the angle-domain structured sparsity of mmWave FSF channels, a distributed compressive sensing (DCS)-based channel estimation scheme is proposed. Moreover, by using the grid matching pursuit strategy with adaptive measurement matrix, the proposed algorithm can solve the power leakage problem caused by the continuous angles of arrival or departure (AoA/AoD). Simulation results verify that the good performance of the proposed solution.Comment: 4 pages, 3 figures, accepted by IEEE Communications Letters. This paper may be the first one that investigates the frequency selective fading channel estimation for mmWave massive MIMO systems with hybrid precoding. Key words: Millimeter-wave (mmWave) massive MIMO, frequency-selective fading, channel estimation, compressive sensing, hybrid precodin

    Distributed Compressive Sensing Based Doubly Selective Channel Estimation for Large-Scale MIMO Systems

    Full text link
    Doubly selective (DS) channel estimation in largescale multiple-input multiple-output (MIMO) systems is a challenging problem due to the requirement of unaffordable pilot overheads and prohibitive complexity. In this paper, we propose a novel distributed compressive sensing (DCS) based channel estimation scheme to solve this problem. In the scheme, we introduce the basis expansion model (BEM) to reduce the required channel coefficients and pilot overheads. And due to the common sparsity of all the transmit-receive antenna pairs in delay domain, we estimate the BEM coefficients by considering the DCS framework, which has a simple linear structure with low complexity. Further more, a linear smoothing method is proposed to improve the estimation accuracy. Finally, we conduct various simulations to verify the validity of the proposed scheme and demonstrate the performance gains of the proposed scheme compared with conventional schemes.Comment: conference,7 pages,5 figure

    Channel Estimation for Orthogonal Time Frequency Space (OTFS) Massive MIMO

    Full text link
    Orthogonal time frequency space (OTFS) modulation outperforms orthogonal frequency division multiplexing (OFDM) in high-mobility scenarios. One challenge for OTFS massive MIMO is downlink channel estimation due to the large number of base station antennas. In this paper, we propose a 3D structured orthogonal matching pursuit algorithm based channel estimation technique to solve this problem. First, we show that the OTFS MIMO channel exhibits 3D structured sparsity: normal sparsity along the delay dimension, block sparsity along the Doppler dimension, and burst sparsity along the angle dimension. Based on the 3D structured channel sparsity, we then formulate the downlink channel estimation problem as a sparse signal recovery problem. Simulation results show that the proposed algorithm can achieve accurate channel state information with low pilot overhead

    Joint Channel Training and Feedback for FDD Massive MIMO Systems

    Full text link
    Massive multiple-input multiple-output (MIMO) is widely recognized as a promising technology for future 5G wireless communication systems. To achieve the theoretical performance gains in massive MIMO systems, accurate channel state information at the transmitter (CSIT) is crucial. Due to the overwhelming pilot signaling and channel feedback overhead, however, conventional downlink channel estimation and uplink channel feedback schemes might not be suitable for frequency-division duplexing (FDD) massive MIMO systems. In addition, these two topics are usually separately considered in the literature. In this paper, we propose a joint channel training and feedback scheme for FDD massive MIMO systems. Specifically, we firstly exploit the temporal correlation of time-varying channels to propose a differential channel training and feedback scheme, which simultaneously reduces the overhead for downlink training and uplink feedback. We next propose a structured compressive sampling matching pursuit (S-CoSaMP) algorithm to acquire a reliable CSIT by exploiting the structured sparsity of wireless MIMO channels. Simulation results demonstrate that the proposed scheme can achieve substantial reduction in the training and feedback overhead

    A Block Sparsity Based Estimator for mmWave Massive MIMO Channels with Beam Squint

    Full text link
    Multiple-input multiple-output (MIMO) millimeter wave (mmWave) communication is a key technology for next generation wireless networks. One of the consequences of utilizing a large number of antennas with an increased bandwidth is that array steering vectors vary among different subcarriers. Due to this effect, known as beam squint, the conventional channel model is no longer applicable for mmWave massive MIMO systems. In this paper, we study channel estimation under the resulting non-standard model. To that aim, we first analyze the beam squint effect from an array signal processing perspective, resulting in a model which sheds light on the angle-delay sparsity of mmWave transmission. We next design a compressive sensing based channel estimation algorithm which utilizes the shift-invariant block-sparsity of this channel model. The proposed algorithm jointly computes the off-grid angles, the off-grid delays, and the complex gains of the multi-path channel. We show that the newly proposed scheme reflects the mmWave channel more accurately and results in improved performance compared to traditional approaches. We then demonstrate how this approach can be applied to recover both the uplink as well as the downlink channel in frequency division duplex (FDD) systems, by exploiting the angle-delay reciprocity of mmWave channels

    Bayesian Optimal Data Detector for mmWave OFDM System with Low-Resolution ADC

    Full text link
    Orthogonal frequency division multiplexing (OFDM) has been widely used in communication systems operating in the millimeter wave (mmWave) band to combat frequency-selective fading and achieve multi-Gbps transmissions, such as IEEE 802.15.3c and IEEE 802.11ad. For mmWave systems with ultra high sampling rate requirements, the use of low-resolution analog-to-digital converters (ADCs) (i.e., 1-3 bits) ensures an acceptable level of power consumption and system costs. However, orthogonality among sub-channels in the OFDM system cannot be maintained because of the severe non-linearity caused by low-resolution ADC, which renders the design of data detector challenging. In this study, we develop an efficient algorithm for optimal data detection in the mmWave OFDM system with low-resolution ADCs. The analytical performance of the proposed detector is derived and verified to achieve the fundamental limit of the Bayesian optimal design. On the basis of the derived analytical expression, we further propose a power allocation (PA) scheme that seeks to minimize the average symbol error rate. In addition to the optimal data detector, we also develop a feasible channel estimation method, which can provide high-quality channel state information without significant pilot overhead. Simulation results confirm the accuracy of our analysis and illustrate that the performance of the proposed detector in conjunction with the proposed PA scheme is close to the optimal performance of the OFDM system with infinite-resolution ADC.Comment: 32 pages, 12 figures; accepted by IEEE JSAC special issue on millimeter wave communications for future mobile network

    Efficient Beam Alignment for mmWave Single-Carrier Systems with Hybrid MIMO Transceivers

    Full text link
    Communication at millimeter wave (mmWave) bands is expected to become a key ingredient of next generation (5G) wireless networks. Effective mmWave communications require fast and reliable methods for beamforming at both the User Equipment (UE) and the Base Station (BS) sides, in order to achieve a sufficiently large Signal-to-Noise Ratio (SNR) after beamforming. We refer to the problem of finding a pair of strongly coupled narrow beams at the transmitter and receiver as the Beam Alignment (BA) problem. In this paper, we propose an efficient BA scheme for single-carrier mmWave communications. In the proposed scheme, the BS periodically probes the channel in the downlink via a pre-specified pseudo-random beamforming codebook and pseudo-random spreading codes, letting each UE estimate the Angle-of-Arrival / Angle-of-Departure (AoA-AoD) pair of the multipath channel for which the energy transfer is maximum. We leverage the sparse nature of mmWave channels in the AoA-AoD domain to formulate the BA problem as the estimation of a sparse non-negative vector. Based on the recently developed Non-Negative Least Squares (NNLS) technique, we efficiently find the strongest AoA-AoD pair connecting each UE to the BS. We evaluate the performance of the proposed scheme under a realistic channel model, where the propagation channel consists of a few multipath scattering components each having different delays, AoAs-AoDs, and Doppler shifts.The channel model parameters are consistent with experimental channel measurements. Simulation results indicate that the proposed method is highly robust to fast channel variations caused by the large Doppler spread between the multipath components. Furthermore, we also show that after achieving BA the beamformed channel is essentially frequency-flat, such that single-carrier communication needs no equalization in the time domain
    corecore