20,900 research outputs found

    Streaming Similarity Self-Join

    Full text link
    We introduce and study the problem of computing the similarity self-join in a streaming context (SSSJ), where the input is an unbounded stream of items arriving continuously. The goal is to find all pairs of items in the stream whose similarity is greater than a given threshold. The simplest formulation of the problem requires unbounded memory, and thus, it is intractable. To make the problem feasible, we introduce the notion of time-dependent similarity: the similarity of two items decreases with the difference in their arrival time. By leveraging the properties of this time-dependent similarity function, we design two algorithmic frameworks to solve the sssj problem. The first one, MiniBatch (MB), uses existing index-based filtering techniques for the static version of the problem, and combines them in a pipeline. The second framework, Streaming (STR), adds time filtering to the existing indexes, and integrates new time-based bounds deeply in the working of the algorithms. We also introduce a new indexing technique (L2), which is based on an existing state-of-the-art indexing technique (L2AP), but is optimized for the streaming case. Extensive experiments show that the STR algorithm, when instantiated with the L2 index, is the most scalable option across a wide array of datasets and parameters

    SVS-JOIN : efficient spatial visual similarity join for geo-multimedia

    Get PDF
    In the big data era, massive amount of multimedia data with geo-tags has been generated and collected by smart devices equipped with mobile communications module and position sensor module. This trend has put forward higher request on large-scale geo-multimedia retrieval. Spatial similarity join is one of the significant problems in the area of spatial database. Previous works focused on spatial textual document search problem, rather than geo-multimedia retrieval. In this paper, we investigate a novel geo-multimedia retrieval paradigm named spatial visual similarity join (SVS-JOIN for short), which aims to search similar geo-image pairs in both aspects of geo-location and visual content. Firstly, the definition of SVS-JOIN is proposed and then we present the geographical similarity and visual similarity measurement. Inspired by the approach for textual similarity join, we develop an algorithm named SVS-JOIN B by combining the PPJOIN algorithm and visual similarity. Besides, an extension of it named SVS-JOIN G is developed, which utilizes spatial grid strategy to improve the search efficiency. To further speed up the search, a novel approach called SVS-JOIN Q is carefully designed, in which a quadtree and a global inverted index are employed. Comprehensive experiments are conducted on two geo-image datasets and the results demonstrate that our solution can address the SVS-JOIN problem effectively and efficiently

    Efficient Processing of k Nearest Neighbor Joins using MapReduce

    Full text link
    k nearest neighbor join (kNN join), designed to find k nearest neighbors from a dataset S for every object in another dataset R, is a primitive operation widely adopted by many data mining applications. As a combination of the k nearest neighbor query and the join operation, kNN join is an expensive operation. Given the increasing volume of data, it is difficult to perform a kNN join on a centralized machine efficiently. In this paper, we investigate how to perform kNN join using MapReduce which is a well-accepted framework for data-intensive applications over clusters of computers. In brief, the mappers cluster objects into groups; the reducers perform the kNN join on each group of objects separately. We design an effective mapping mechanism that exploits pruning rules for distance filtering, and hence reduces both the shuffling and computational costs. To reduce the shuffling cost, we propose two approximate algorithms to minimize the number of replicas. Extensive experiments on our in-house cluster demonstrate that our proposed methods are efficient, robust and scalable.Comment: VLDB201

    DRSP : Dimension Reduction For Similarity Matching And Pruning Of Time Series Data Streams

    Get PDF
    Similarity matching and join of time series data streams has gained a lot of relevance in today's world that has large streaming data. This process finds wide scale application in the areas of location tracking, sensor networks, object positioning and monitoring to name a few. However, as the size of the data stream increases, the cost involved to retain all the data in order to aid the process of similarity matching also increases. We develop a novel framework to addresses the following objectives. Firstly, Dimension reduction is performed in the preprocessing stage, where large stream data is segmented and reduced into a compact representation such that it retains all the crucial information by a technique called Multi-level Segment Means (MSM). This reduces the space complexity associated with the storage of large time-series data streams. Secondly, it incorporates effective Similarity Matching technique to analyze if the new data objects are symmetric to the existing data stream. And finally, the Pruning Technique that filters out the pseudo data object pairs and join only the relevant pairs. The computational cost for MSM is O(l*ni) and the cost for pruning is O(DRF*wsize*d), where DRF is the Dimension Reduction Factor. We have performed exhaustive experimental trials to show that the proposed framework is both efficient and competent in comparison with earlier works.Comment: 20 pages,8 figures, 6 Table
    corecore