2,037 research outputs found

    KALwEN+: Practical Key Management Schemes for Gossip-Based Wireless Medical Sensor Networks

    Get PDF
    The constrained resources of sensors restrict the design of a key management scheme for wireless sensor networks (WSNs). In this work, we first formalize the security model of ALwEN, which is a gossip-based wireless medical sensor network (WMSN) for ambient assisted living. Our security model considers the node capture, the gossip-based network and the revocation problems, which should be valuable for ALwEN-like applications. Based on Shamir's secret sharing technique, we then propose two key management schemes for ALwEN, namely the KALwEN+ schemes, which are proven with the security properties defined in the security model. The KALwEN+ schemes not only fit ALwEN, but also can be tailored to other scalable wireless sensor networks based on gossiping

    KALwEN: A New Practical and Interoperable Key Management Scheme for Body Sensor Networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks(BSNs) pose several challenges -- some inherited from wireless sensor networks(WSNs), some unique to themselves -- that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new lightweight scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports global broadcast, local broadcast and neighbor-to-neighbor unicast, while preserving past key secrecry and future key secrecy. The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case

    Key Management Building Blocks for Wireless Sensor Networks

    Get PDF
    Cryptography is the means to ensure data confidentiality, integrity and authentication in wireless sensor networks (WSNs). To use cryptography effectively however, the cryptographic keys need to be managed properly. First of all, the necessary keys need to be distributed to the nodes before the nodes are deployed in the field, in such a way that any two or more nodes that need to communicate securely can establish a session key. Then, the session keys need to be refreshed from time to time to prevent birthday attacks. Finally, in case any of the nodes is found to be compromised, the key ring of the compromised node needs to be revoked and some or all of the compromised keys might need to be replaced. These processes, together with the policies and techniques needed to support them, are called key management. The facts that WSNs (1) are generally not tamper-resistant; (2) operate unattended; (3) communicate in an open medium; (4) have no fixed infrastructure and pre-configured topology; (5) have severe hardware and resource constraints, present unique challenges to key management. In this article, we explore techniques for meeting these challenges. What distinguishes our approach from a routine literature survey is that, instead of comparing various known schemes, we set out to identify the basic cryptographic principles, or building blocks that will allow practitioners to set up their own key management framework using these building blocks

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures
    corecore